
PHYSICAL REVIEW E NOVEMBER 1997VOLUME 56, NUMBER 5
Perturbation theory for the Manakov soliton and its applications to pulse propagation
in randomly birefringent fibers
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We develop perturbation theory for the soliton of the Manakov equation, and apply it to the problem of
soliton propagation in randomly birefringent fibers. We calculate both the slow evolution of the soliton
parameters~through second order for two of them! as well as the radiation emitted by the soliton. Our
analytical results agree well with the corresponding numerical results of earlier studies. We also relate results
obtained with perturbation theory with those obtained from the intuitive picture of the dynamics of the soliton
components as interacting quasiparticles.@S1063-651X~97!12611-3#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

In this work, we develop perturbation theory for the on
soliton solution of the exactly integrable, two-compone
vector nonlinear Schro¨dinger ~NLS! model, and apply the
results to a particular problem in the optical fiber commu
cations. The model which we consider has the form

iuz1utt12u~ uuu21uvu2!5eRu@u,v,z,t#,
~1.1!

ivz1vtt12v~ uuu21uvu2!5eRv@u,v,z,t#,

where, in the context of nonlinear optics,u and v are the
envelopes of the electric field in the fiber;z and t are, re-
spectively, the distance along the fiber and the time in
pulse’s reference frame~thus z being the evolution coordi-
nate!; eRu andeRv are perturbations of arbitrary form; ande
is a small parameter characterizing the magnitude of th
perturbations. Manakov@1# was the first to show that Eqs
~1.1! with e50 are integrable by the method of the inver
scattering transform~IST!; therefore, we will refer to the
left-hand side of Eqs.~1.1! as the Manakov equation. I
should be noted that the perturbation theory for a rather g
eral class of exactly integrable~by the IST! evolution equa-
tions, which includes the Manakov equation as a spe
case, was already worked out in Ref.@2#. The results of Ref.
@2# allow one, in principle, to find both the evolution of th
scattering data associated with the pulse, and the form o
so-called squared eigenfunctions, which give the basis fu
tions over which an arbitrary perturbation of the pulse’s p
file can be expanded~see, e.g., Refs.@3,4#!. However, as
those results refer to a general class of equations, one w
have to extract from them the explicit formulas necessary
application to a concrete problem. In fact, in two very rec
works @5,6#, the IST has been used to develop the pertur
tion theory for the Manakov equation with the backgrou
solution of a general~in particular,N-soliton! form.

The perturbation theory that we present below doesnot
make use of the IST formalism for the Manakov equatio
561063-651X/97/56~5!/6147~19!/$10.00
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Instead, we take a more direct approach and exploit the s
larity between the one-soliton solution of the Manakov eq
tion and that of a single NLS equation. The soliton of t
Manakov equation has the form:

u05A cosb sechAt eiA2z,
~1.2!

v05A sinb sechAt eiA2z,

where we assumed for the moment that the velocity of
soliton, the position of its center, and the constant phase
both u andv components are all zero. In Eq.~1.2!, the con-
stant variableb, which is the polarization angle of the sol
ton, can take on arbitrary~real! values. Also, the Manakov
equation, i.e., the system of Eqs.~1.1! with e50, is invariant
with respect to the unitary transformation

S u8

v8
D 5S cosg 2sing

sing cosg D S u

v D , ~1.3!

by means of which the angleb in Eq. ~1.2! can always be
made equal to zero. In the latter case, the first componen
the soliton ~1.2! reduces to the soliton of the scalar NL
equation, and then the first of Eqs.~1.1!, with e50, reduces
to the NLS equation. The second of those equations beco
satisfied identically, because forb50, we havev[0. When
one slightly perturbs the resulting equations by allowinge to
be small but nonzero, the solution will acquire the form

u5u0ub501eu11••• , v5ev11••• .

Then foru1, one obtains exactly the linearized NLS equati
with a background of a pure soliton. The solution to th
equation has been known for a long time@4,7–10#; it consti-
tutes the perturbation theory for the NLS soliton. The eq
tion for v1 now becomes simply thelinear Schrödinger
equation with a sech2 potential, whose solution can be foun
in almost any textbook on quantum mechanics. Thus the
turbation theory for the single soliton of the Manakov equ
6147 © 1997 The American Physical Society
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tion can be reduced to two well-known problems. The det
of this approach will be given in Sec. II.

It should be mentioned that, earlier, Malomed@11# found
evolution equations for the parameters of the soliton of
perturbed Manakov equation by using the averaged
grangian density. This allowed him to find the adiabatic e
lution of the perturbed soliton. On the other hand, our res
provide full information about the evolution of both adi
batic and nonadiabatic effects, with the latter describing
radiation emitted by the perturbed soliton.

In Refs.@12–14#, it was shown that the Manakov equatio
governs the average evolution of a pulse in long optical co
munication fibers. It is known that such fibers are birefr
gent, with the strength, as well as the direction of the axis
birefringence, varying over a distance which is on the or
of 10–100 m~Ref. @15#; see also Ref.@14#!. However, the
autocorrelation spectrum of these random variations m
have components from afew centimetersto tens or hundreds
of meters@16#. This causes depolarization of the initial pul
@14,16# over tens or hundreds of meters, which, in turn, ov
even longer distances, leads to the equalization, on the a
age, of the nonlinear self- and cross-phase modulation c
ficients in the equations for the pulse components. Thus
Manakov equation results.

One should note that studies of pulse propagation in
tical fibers based on the single NLS equation have pro
themselves so successful~in the sense that their results agr
quite well with the results of real physical experiments! for
two main reasons. The first reason is the aforementio
similarity between the one-soliton solutions of the NLS a
Manakov equations. The second reason is that most of
perturbations which were considered for the NLS, if th
were rewritten for Eqs.~1.1!, would not destroy the invari-
ance of those equations with respect to transformation~1.3!.
However, in Ref.@14# it was shown that random variation
of the birefringence parameters in the fiber produce two p
turbation terms, which in Ref.@14# were called linear and
nonlinear polarization mode dispersions~PMD’s!, which do
destroy that invariance. Therefore, to determine their ef
on the soliton, the perturbation theory for the NLS is
longer adequate, and the corresponding theory for the M
kov equation is required.

In this work, we will also apply the perturbation theor
that we have developed for the Manakov equation, to a
lytically study the effects of both linear and nonlinear PMD
on the soliton. These effects have been studied numeric
in Refs. @12,17#. Also, the deterministic analog~see below!
of the linear PMD alone, without its nonlinear counterpa
has been thoroughly studied by both analytical@18–21# and
numerical@20,22# means for two nonlinearly coupled NL
equations, with the cross-coupling coefficient being not n
essarily unity@as it is in Eq.~1.1!#. This deterministic bire-
fringence can be modeled by adding the terms (1 idut) and
(2 idvt) to the left-hand sides of the first and second of
corresponding analogs of Eqs.~1.1!, respectively. Here 2d is
the group velocity difference between theu and v compo-
nents. When the parameterd is sufficiently small, then, for a
given amplitude of the soliton, the pulses in the individu
components propagate with the same velocity, becaus
this case, the cross-nonlinearity is strong enough to h
them together in a bound state. Whend exceeds a certain
ls
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threshold valued thr'5.0 @19# @here and below we use th
units of Eqs.~1.1!#, then a splitting of that bound state oc
curs, and the soliton components escape from each o
with each of the resulting ‘‘principal’’ solitons being poss
bly accompanied by a ‘‘shadow’’ in the other compone
The speed with which the escaping solitons separate is
proximately proportional to (d2d thr). On the other hand
when the birefringence is random, numerical simulatio
@12# have shown that its only effects are ‘‘soliton delay, d
formation of the soliton, and creation of shadows.’’@Note
that, in Ref.@12#, d(z) was taken as randomly assuming on
two values,6d.# No splitting of the soliton was observed
even for a rather high value of the birefringence parame
d515.0, at which the simulations in Ref.@12# were run.

Let us note, however, that the outcome of the pulse e
lution for random birefringence will crucially depend~for a
given initial amplitude of the soliton! on the relation between
the birefringence strength and its correlation lengthl cor. The
latter is a typical distance over which the birefringence p
rameter~s! may vary considerably. It was shown in Ref.@17#,
by means of numerical simulations, that the random birefr
gence will almost certainly not split the composite soliton
a unit amplitude if

d2l cor,0.05 . ~1.4!

Here the correspondence between the notations of this p
and those of Ref.@17# is:

~d,l cor! this paper5@2d,1/~2h!# Ref. @17# .

In Sec. V, we demonstrate how the numerical criterion~1.4!
can be obtained, in the order-of-magnitude sense, by ana
cal means. It is very important to emphasize that the criter
of the soliton splittingcannotbe obtained from the perturba
tion theory. Indeed, the latter is based on the fundame
assumption that the discrete eigenvalue that correspond
the soliton in the associated scattering problem@1# is only
slightly changed by the perturbation. Conversely, the sp
ting implies a significant change in the eigenvalue~s! of the
scattering problem@19,20#. In Sec. III, we show that relation
~1.4! is satisfied for some realistic set of values of the fib
and pulse parameters, and so the soliton will not split i
two components. Thus we are indeed justified to use
perturbation theory for the optical soliton. That is, one c
consider the soliton to be a single entity, i.e., a bound stat
its two components, instead of having to consider the
namics of the two components as of separate enti
@18,23,24#.

It should be mentioned that, from a practical viewpoi
there is a very important physical situation where the res
of our workcannotbe applied. This is either when the initia
pulse amplitude is not large enough to give rise to soli
formation, or else when the distance of propagation is su
ciently short for the nonlinearity and dispersion to affect t
pulse evolution significantly. In both these cases, the pu
propagation is linear in the lowest order, with the nonline
ity playing the role of a first-order correction. It is this linea
limit of pulse propagation for which much of experiment
measurements and theoretical calculations have been
@16,25,26#; see also Ref.@14#. Thus it is important to discuss
the relation between some of our results, obtained in Sec.
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56 6149PERTURBATION THEORY FOR THE MANAKOV SOLITON . . .
and the corresponding results which were earlier obtained
the linear limit. We will do this in Sec. IV.

The perturbation theory, which we developed in Sec.
can also be useful in other situations, where the Mana
equation arises as the main-order evolution equation. In
ticular, this equation was shown@27# to describe pulse evo
lution in nonrandombirefringent fibers with a certain ellip
ticity of the eigenmodes. It was also recently reported@28#
that the Manakov equation describes spatial solitons
Al xGa12xAs planar waveguides. Finally, we note that th
equation can also be derived@29# when one averages th
equations of the nonlinear directional coupler when tak
into account random variations of the linear coupling coe
cient and phase velocity mismatch between the two core

The remainder of this paper is organized as follows.
Sec. II, we work out the details of the perturbation theory
the single soliton of the Manakov equation. The reader w
is not interested in the mathematical details of the pertur
tion theory may just browse the beginning of Sec. II to
miliarize himself or herself with the notations, and then
directly to the next section. In Sec. III, we give a brief de
vation of Eqs. ~1.1! in randomly birefringent fibers and
specify the form of the perturbationsRu andRv , as well as
estimate the magnitude of the small parametere. In Sec. IV
we apply the first-order perturbation theory developed
Sec. II to study the effects of the linear and nonlinear PMD
on the soliton. In this way, both the slow evolution of th
soliton parameters and the continuous-wave radiation e
ted by the soliton are calculated and compared, whene
possible, with previous findings. In Sec. V, we first calcula
the second-order changes in the two most important sol
parameters: its width~which is related to the amplitude! and
velocity ~which is related to the mean frequency!. Then, in
the same section, we relate the results for the soliton tim
jitter and the radiation generated due to the linear PMD
obtained by the perturbation theory in Sec. IV, to the cor
sponding results obtained from the intuitive picture of t
dynamics of the soliton components as interacting quasi
ticles. We also show, by using some semiqualitative ar
ments, that the root-mean-square~rms! distance between th
centers of the soliton’s two components is proportional to
fourth root of the birefringence strength. In Sec. VI, we su
marize the results obtained in this work.

II. PERTURBATION THEORY
FOR THE MANAKOV EQUATION

The general form of the one-soliton solution of Eqs.~1.1!
with e50 is

uW 0[S u0

v0
D 52h sechu eiCeis3wB̂S 1

0D , ~2.1!

where

C5a~z!2
j

h
u, u52h@t2tc~z!#, ~2.2a!

da

dz
54~j21h2!,

dtc

dz
524j, ~2.2b!
or
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B̂5S cosb 2sinb

sinb cosb D , ~2.2c!

the Pauli matrices are

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

and j, h, w, andb are constants. When Eqs.~1.1! are per-
turbed witheÞ0, we will take the solution to be of the form

uW 5eiCeis3wB̂~uW 001euW 101••• !, ~2.3a!

where

uW 0052h sechuS 1

0D[S u00

0 D , uW 105S u10

v10
D . ~2.3b!

In expansion~2.3!, one also needs to assume the paramet
which were constant for soliton~2.1!, to be slowly varying
functions ofz:

d

dz
h5eḣ11e2ḣ21••• ,

d

dz
j5ej̇11e2j̇21••• ,

d

dz
b5eḃ11e2ḃ21••• ,

d

dz
w5eẇ11e2ẇ21••• ,

~2.4!

d

dz
a5ȧ01eȧ11••• ,

d

dz
tc5 ṫc01eṫc11••• ,

where ȧ0 and ṫc0 are given by Eq.~2.2b!, and ḣ1, ḣ2, j̇1,
etc. are to be determined.

In what follows, it will be convenient for us to introduc
the following notations:

w¢ 105S u10

u10*

v10

v10*
D ,

RW 5S Rue2 iwcosb1Rveiwsinb

2~Rue2 iwcosb1Rveiwsinb!*

2Rue2 iwsinb1Rveiwcosb

2~2Rue2 iwsinb1Rveiwcosb!*
D , ~2.5a!

ŝ35S s3 0

0 s3
D , ŝ15S s1 0

0 s1
D , ~2.5b!

and

f̂15
1

2hS iu00

2 iu00

0

0

D , f̂25
1

2hS ]uu00

]uu00

0

0

D , f̂1
D5

1

2S ]hu00

]hu00

0

0

D ,

~2.6!
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f̂2
D5

1

2hS 2 iuu00

iuu00

0

0

D , f̂35
1

2hS 0

0

iu00

2 iu00

D , f̂45
1

2hS 0

0

u00

u00

D .

Then, substituting Eqs.~2.1!–~2.4! into Eqs. ~1.1!, and re-
taining only the first-order~in e) terms, one obtains the fol
lowing evolution equation for the vectorw¢ 10:

i ] tw¢ 1014h2LMw¢ 105e2 i ŝ3CRW 22ihH ~ ȧ122jṫc1!f̂1

1~22hṫc1!f̂21ẇ1~f̂1cos2b

2f̂3sin2b!1ḃ1f̂41
ḣ1

h
f̂1

D1 j̇1f̂2
DJ

50. ~2.7!

Above,LM is the block-diagonal operator:

LM5S LNLS 0

0 L'
D , ~2.8a!

where

LNLS5s3~]uu21!12~2s31 is2!sech2u, ~2.8b!

L'5s3~]uu2112 sech2u!. ~2.8c!

Since Eq.~2.7! is a linear equation forw¢ 10, one may solve it
by using separation of variables:w¢ 10(u,z)5w¢ 10(u)eilz. This
yields an eigenvalue problem for the operatorLM :

LMc5lc. ~2.9!

Due to the block-diagonal structure ofLM , we can indepen-
dently solve each of the two matrix blocks in Eq.~2.9!.

The operatorLNLS arises in the perturbation theory for th
soliton of the NLS, and so its spectrum, as well as the eig
functions and their closure, are known~see, e.g., Ref.@8#!.
That is, one has

LNLScNLS5~k211!cNLS, ~2.10a!

cNLS5eikuF S 12
2ik~12tanhu!

~k1 i !2 D S 0

1D 1
sech2u

~k1 i !2S 1

1D G ,

~2.10b!

LNLSc̄NLS52~k211!c̄NLS, c̄NLS5s1~cNLS!* ,
~2.10c!

LNLSf̂1,2
NLS50, LNLS~f̂1,2

D !NLS522i f̂1,2
NLS , ~2.11!

where f̂1,2
NLS and (f̂1,2

D )NLS are the two-component vector
whose components coincide with the first two component
the corresponding vectors defined in Eq.~2.6!. Note that the
vectorsc̄NLS, f̂1

NLS , and (f̂2
D)NLS are defined in a slightly

different way than in Ref.@8#. It was also shown in Ref.@3#
that the above eigenfunctions ofLNLS and the two associat
n-

f

functions (f̂1,2
D )NLS form a basis for the expansion of an a

bitrary two-component vector with sufficiently smooth an
rapidly decaying components.

The second matrix block of the operatorLM , i.e., L' , is
a diagonal operator, and, moreover, each of its entries re
sents a well-known quantum-mechanical problem. Thus
solutions of

L'c'5~k211!c' and L'c̄'52~k211!c̄'

~2.12a!

are the functions

c'5S 2 ik1tanhu

2 ik11 DeikuS 0

1D , c̄'5s1~ c̄'!* .

~2.12b!

The operatorL' also has two linearly independent boun
states,

L'f̂1
'5L'f̂2

'50, ~2.13!

where the components off̂1,2
' coincide, respectively, with

the last two components of the vectorsf̂3,4 in Eq. ~2.6!.
Since the operatorL' is Hermitian, then the eigenfunction
c', c̄', andf̂1,2

' form a basis in the space of two-compone
vectors.

Thus an arbitrary four-component vectorw¢ 10 can be ex-
panded over the eigenfunctions and the associate funct
of the operatorLM as follows:

w¢ 10~u,z!5E
2`

`

@g1~k,z!c11 ḡ1~k,z!c̄11g3~k,z!c3

1 ḡ3~k,z!c̄3#dk1 (
n51

4

hn~z!f̂n1@h1
D~z!f̂1

D

1h2
D~z!f̂2

D#. ~2.14!

In this equation, the four-component eigenfunctionsc1,3 and
c̄1,3 are

c15S cNLS

0 D , c35S 0

c'D , c̄1,35ŝ1c1,3* , ~2.15!

wherecNLS and c' are given by Eqs.~2.10b! and ~2.12b!,
and the exponentially localized functionsf̂1 throughf̂2

D are

given by Eq.~2.6!. Also, g1,3, ḡ1,3, andh1 throughh2
D are

the expansion coefficients. In order to find these coefficie
from Eq.~2.7!, one needs to know the solution of the adjoi
problem for a row vectorcA which is defined so as to satisf
the equation

cALQ M5lcA, ~2.16!

where the left-pointing arrow overLM indicates the direction
of the differentiation]u . Using the fact that the operato
ŝ3LM is self-adjoint, one can show~see, e.g., Refs.@8,30#!
that the vectorc†(k,u)ŝ3, wherec is a solution of Eq.~2.9!
and the superscript ‘‘†’’ denotes the Hermitian conjugatio
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satisfies Eq.~2.16!. Then, using the Wronskian relation fo
the operatorLM , one obtains, in a standard way, the follow
ing inner products:

^c1
†~k8!uŝ3uc1~k!&5^c3

†~k8!uŝ3uc3~k!&522pd~k2k8!,
~2.17a!

^ c̄†~k8!uŝ3u c̄ ~k!&5^ c̄3
†~k8!uŝ3u c̄3~k!&52pd~k2k8!,

~2.17b!

where the inner product is defined by

^qumup&5E
2`

`

du q~u!m~u!p~u!.

The inner products among the localized eigenfunctions
their adjoints can be found straightforwardly:

^~f̂1
D!†uŝ3uf̂1&52^f̂1

†uŝ3uf̂1
D&52i , ~2.18a!

^~f̂2
D!†uŝ3uf̂2&52^f̂2

†uŝ3uf̂2
D&522i , ~2.18b!

^f̂4
†uŝ3uf̂3&52^f̂3

†uŝ3uf̂4&54i . ~2.18c!

All the other inner products are equal to zero.
Now, using the identity

ŝ1w¢ 10* 5w¢ 10, ~2.19!

and also the relationc̄1,35ŝ1c1,3* @see Eq.~2.15!# and the

explicit form of the localized statesf̂1 throughf̂2
D , one can

easily obtain the following symmetry relations for the expa
sion coefficients:

ḡ1,3~k!5g1,3* ~k!, ~2.20a!

hn5hn* , n51, . . . ,4, h1,2
D 5~h1,2

D !* . ~2.20b!

Finally, substituting expansion~2.14! into Eq. ~2.7! and
using the inner products Eqs.~2.17! and ~2.18!, we obtain

ih1,z28ih2h1
D12ih~ȧ122jṫc11ẇ1cos2b!

5
1

2i
^~f1

D!†uŝ3uRW &, ~2.21a!

ih2,z28ih2h2
D12ih~22hṫc1!52

1

2i
^~f2

D!†uŝ3uRW &,

~2.21b!

ih3,z12ih~2ẇ1sin2b!5
1

4i
^f̂4

†uŝ3uRW &, ~2.21c!

ih4,z12ihḃ152
1

4i
^f̂3

†uŝ3uRW &, ~2.21d!

ih1,z
D 12ihḣ152

1

2i
^f̂1

†uŝ3uRW &, ~2.21e!

ih2,z
D 12ihj̇15

1

2i
^f̂2

†uŝ3uRW &, ~2.21f!
d

-

i ]zg1,314h2~k211!g1,352
1

2p
^c1,3

† ~k!uŝ3uRW &.

~2.21g!

~Above,h1,z , etc. stands fordh1 /dz, etc., respectively, while
the notationg1,3 means eitherg1 or g3.! Equations forḡ1,3
follow then from Eqs.~2.21g! and ~2.20a!. Note also that
Eqs. ~2.21a!–~2.21f! are consistent with the symmetr
~2.20b!.

The standard requirement that the expansion coefficie
do not grow secularly withz leads to the following evolution
equations for the soliton parameters@cf. Eq. ~2.4!#:

ḣ15
1

4h
^f̂1

†uŝ3uRW &, ~2.22a!

j̇152
1

4h
^f̂2

†uŝ3uRW &, ~2.22b!

ȧ122jṫc11ẇ1 cos 2b52
1

4h
^~f̂1

D!†uŝ3uRW &,

~2.22c!

ṫc152
1

4h2
^~f̂2

D!†uŝ3uRW &, ~2.22d!

ẇ1sin2b5
1

8h
^f̂4

†uŝ3uRW &, ~2.22e!

ḃ15
1

8h
^f̂3

†uŝ3uRW &. ~2.22f!

Equations~2.22!, ~2.21g!, and~2.14! constitute the complete
first-order perturbation theory for the one-soliton solution
the Manakov equation. Note that Eqs.~2.22! guarantee that if
h1 throughh2

D in Eq. ~2.14! are zero atz50, then they will
remain zero for allz.

III. ORIGIN OF THE MANAKOV EQUATION
IN RANDOMLY BIREFRINGENT FIBERS

In this section, we will follow the main steps of Ref.@14#,
and give the derivation of the Manakov equation in ra
domly birefringent fibers. We will also estimate the size
the perturbations to this equation due to linear and nonlin
PMD.

The equation describing the evolution of a pulse in a fib
with linearly polarized, orthogonal eigenmodes is~see, e.g.,
Ref. @14#!

iAW z1KAW 1 iDAW t1AW tt1
9

4
NW 50W , ~3.1!

where vectorAW 5(A1 ,A2)T denotes the envelopes of th
electric field in the two eigenmodes, and

NW 5S ~ uA1u21 2
3 uA2u2!A11 1

3 A2
2A1*

~ uA2u21 2
3 uA1u2!A21 1

3 A1
2A2*

D . ~3.2!
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All the variables in Eq.~3.1! are appropriately normalized
with z and t denoting the distance along the fiber and t
retarded time in the pulse’s reference frame, respectiv

The coefficient (94 ) in front of the nonlinear termNW in Eq.
~3.1! is chosen in order to have the resultant Manakov eq
tion exactly in the form of Eq.~1.1!. The most general form
of the matrixK in Eq. ~3.1! is

K5k1s11k2s21k3s3 , ~3.3!

wherek1 , k2 , andk3 are real, independent random fun
tions ofz @25,14,31#, ands1 , s2 , ands3 are Pauli matri-
ces, introduced before. The coefficientsk1 , k2 , and k3,
which vanish if the fiber has a perfectly circularly symmet
cross section, acquire nonzero values when that circular s
metry is broken due to unavoidable imperfections in
manufacturing or installation of the fiber, or due to enviro
mental perturbations. The coefficientsk1 andk3 correspond
to the random birefringence introduced by the geometric
stress factors, and the coefficientk2 corresponds to random
microtwists of the fiber around its longitudinal axis@25,27#.
For a pair of orthogonal eigenmodes of the fiber which
somez5z0 are aligned along some fixed axes in the cro
section plane, the presence of the termKAW in the evolution
Eq. ~3.1! causes linear coupling between these modes
well as an accumulation of a mismatch between their pha
as z increases along the fiber. The coefficientsk1(z) and
k3(z) also depend on the center frequencyv0 of the carrier
wave, whereask2(z) obviously does not. Consequently, th
matrix D can be shown to have the form@27,31#

D5S ]

]v
K D U

v5v0

[k18s11k38s3 , ~3.4!

wherek1,38 5(]k1,3/]v)uv5v0
.

There are several important length scales in Eq.~3.1!,
which we shall now discuss. The distancez and the ampli-
tude ofAW in Eq. ~3.1! are normalized in such a way that th
dispersion lengthl sol, which is also on the order of magn
tude of the nonlinear length, is unity.~This distance is also
sometimes called the soliton period.! With such a normaliza-
tion, the magnitudes of the fourth and fifth terms in Eq.~3.1!
are of order 1, whereas the magnitude of the termKAW is of
the order (l sol/ l beat)@1. Herel beat;^k1

21k2
21k3

2&21/2 is the
average beat length between the two linear eigenmode
the fiber due to the latter’s birefringence, and the notati
^•••& stands for the average over an ensemble of fiber
over the distance along a single fiber@16#. In fact, in present-
day communication fibers the relative difference (Dn/n) be-
tween the two refractive indices of the fiber is typically o
the order of 1027 @14#. Then, given that the carrier wave
length isl051.5mm, one hasl beat&10 m. Forl sol;100 km,
which is of the right order of magnitude for a 20-ps pulse
a dispersion-shifted fiber, one haszuKAW uz;( l sol/ l beat);104.
Here zu•••uz denotes the magnitude of a vector. As we sh
demonstrate below, in Eq.~3.1! the magnitude of the third
term is of order 1, and thus it is the termKAW that determines
the pulse evolution on the distances that are much sho
y.

a-
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than the nonlinear and dispersion lengths. Therefore,
need to analyze that term before we can proceed with
analysis of the other terms.

One can eliminate the fast variations, caused by the r
dom birefringence, of the direction and phases of the fi
vectorAW by means of the following transformation:

AW 5M ~z!uW , M ~z!5S m1 2m2*

m2 m1*
D , ~3.5!

where uW is the ‘‘slow’’ field vector and the matrixM (z)
satisfies

iM z1KM50, ~3.6!

and is unitary:

um1u21um2u251. ~3.7!

Although it would be desirable to carry out the calcul
tions with a most general form of the matrixK, i.e., assum-
ing k1,2,3 to be independent random variables, this could o
be done@31# in the limit when the correlation lengthl cor of
k1,2,3 is much lessthan the beat lengthl beat. In this limit, it
can be shown that the slow evolution of the pulse envelop
also governed by the Manakov equation. However, in co
munication fibers one hasl cor;10...100 m andl beat&10 m
@14,15#, so it is the opposite limit, namely,l cor@ l beat, that
applies. Therefore, in what follows we will have to consid
a simplified model of random birefringence, originally intro
duced in Ref.@16# and further studied in Refs.@32,14#. We
will now describe the details of that model.

First, it was shown in Ref.@32# by numerical simulations
that even if k2[0 in Eq. ~3.3! and k1,3 are independen
random variables driven by~independent! white-noise pro-
cessesw1,3(z), so that

dkn

dz
52

kn

l cor
1wn , n51,3,

~3.8!

^wn&50, ^wn~z1!wm~z2!&52
Dm

l cor
dnmd~z12z2!,

the direction of the Stokes vector of the electric field in t
pulse is, after a sufficiently long distance of propagatio
uniformly randomized over the Poincare´ sphere. As a conse
quence, the pulse evolution will be governed by the Ma
kov equation even in this, somewhat reduced, model of
random birefringence @33#. Furthermore, it was shown
@32,14# that the above conclusion about the Stokes vec
still holds, and hence the Manakov equation results as
main-order evolution equation, even if one further restri
k1 andk3 to be

k15b~v!sinF~z!, k35b~v!cosF~z!,
~3.9!

dF

dz
5wF~z!, ^wF~z1!wF~z2!&52DFd~z12z2!.

In Ref. @14#, birefringence models~3.8! and~3.9! were called
the second and first models, respectively. Thus the
model, which assumes that the birefringence has a fixed t
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strengthb(v), yields essentially the same results@32# as the
more general second birefringence model. An intuitive
planation of this is as follows. It is the random character
the birefringence angle, rather than that of its strength,
is essential for the uniform ‘‘smearing’’ of the Stokes vect
over the Poincare´ sphere. Indeed, if one considers a mod
where the birefringence angle@F in Eq. ~3.9!# is fixed and
the birefringence strengthb varies randomly, then it is eas
to show that the corresponding Eqs.~3.6! can be solved ex-
actly. In particular, it can be shown that the direction of t
Stokes vector will never be uniformly randomized over t
Poincare´ sphere.

It was shown in Ref.@14# that, for the first birefringence
model, the average of any polynomial involving the quan
ties Sn @to be defined in Eqs.~3.11! below# and cosNF or
sinNF for anyN can be explicitly computed, with no restric
tion being put on the ratio (l cor/ l beat). On the other hand, the
same for the second birefringence model can be done
actly only in the limit l cor! l beat ~cf. Appendix A!. These
averages turn out to be important in calculations in Sec.
and therefore we will mostly use the results for the first
refringence model in this work~except for the end of Sec. V
and Appendix B!. According to what was said in the prece
ing paragraph, restricting our considerations to a spec
model of random birefringence does not appear to limit
validity of our results.

Now we will list the most important physical lengths
terms of the parameters of the first birefringence model:

l cor5
1

DF
, l beat5

2p

b
, ~3.10a!

l diffusion' l cor ~for l cor@ l beat). ~3.10b!

Here l diffusion is the distance over which the field, measur
with respect to the local axes of birefringence, loses mem
of its initial orientation relative to those axes. As was sho
in Refs.@32,14#, l diffusion is also of the order of magnitude o
the distance over which the entries of the matrixM , defined
in Eq. ~3.5!, may change significantly. Next, in what follow
it will be convenient to use the following sets of notation

S15um1u22um2u2, S452m1m2 ,

S25m1* m21m1m2* , S55m2
22m1

2, ~3.11a!

S35 i ~m1* m22m1m2* !, S65 i ~m1
21m2

2!,

S̃n115Sn11cosF1Sn12sinF,

S̃n1252Sn11sinF1Sn12cosF, ~3.11b!

S̃n135Sn13 , n50,3.

Note that, when in Eq.~3.5! the vectoruW 5(1,0)T, then SW
5(S1 ,S2 ,S3)T is the Stokes vector. Moreover, we will re
quire an explicit form of the matrixD, defined in Eq.~3.4!.
Following Refs.@25,16,14#, we take
-
f
at

l

-

x-

,
-

c
e

ry
n

k185b8sinF, k385b8cosF, b8[
db

dv U
v5v0

,

~3.12!

with b8 being independent ofz. The assumption that the
angleF does not depend onv, that has allowed us to obtai
Eq. ~3.12! from Eq. ~3.9!, is based on the experimental fa
that in fibers, the group and phase velocities coincide wit
about 10%~see, e.g., Ref.@16#!.

Now an evolution equation for the vectoruW 5(u,v)T fol-
lows from Eqs.~3.1!, ~3.5!, and~3.6!. It is

iuW z1uW tt12~uW †uW !uW 52$ iVuW t1@ 9
4 M 21NW 22~uW †uW !uW #%,

~3.13!

whereuW †5(u* ,v* ), and

V5M 21DM5k18S S2 2S5*

2S5 2S2
D 1k38S S1 2S4*

2S4 2S1
D .

~3.14!

For the first birefringence model, the form ofV can be sim-
plified:

V5b8S S̃1 2 S̃4*

2 S̃4 2 S̃1
D , ~3.15!

where we used Eqs.~3.12! and~3.11b!. The left-hand side of
Eq. ~3.13! is the Manakov equation and right-hand side is
random perturbation with a zero mean value@14#.

Let us now estimate the size of the first term on the rig
hand side of Eq.~3.13!, which represents the linear PMD
The magnitude of the entries of the matrixV is on the order
of O(k181k38)5O@(k11k3)/v0#, where v0 is the carrier

frequency. Next, the magnitude ofut
W is of the order

O(iuW i /Tp), whereTp is the pulse width. Therefore, the siz
of the linear PMD term in Eq.~3.1! is (1/v0Tp) times the
size of the termKAW . For a 20-ps pulse, (v0Tp);104, and
thus iVut

W i;( l sol/ l beat)31024*1 in Eq. ~3.13!. At first
sight, this seems to be not a small perturbation, since the
of all the terms on the left-hand side of Eq.~3.7! is also
O(1). However, as will be clear from the results of Sec. I

it is not the rms value ofVut
W , i.e., A^uuVuW tuu2&, but rather

the integral of its autocorrelation function~i.e., the intensity!
that will determine the effect of that term on the soliton. T
autocorrelation function of each of the components of
vector Vut

W can be approximately given by the followin
expression:

^a~z!a~z1!&5S D

L DexpH 2
uz2z1u

L J , ~3.16!

wherea(z) denotes either of the components ofVut
W , andD

and L are its intensity and correlation length, respective
Note that

E
2`

`

^a~z!a~z1z1!&dz152D.
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From Eq. ~3.16!, (D lin /L lin)5^iVut
W i2&;1...10 in units

of Eq. ~3.13!, where the subscript ‘‘lin’’ stands for the linea
PMD. L lin is the length scale of the most rapidly changi
term of the matrixV, i.e., L lin5min(lcor,l diffusion). As we
mentioned earlier, in communication-grade fibers one
l cor;10...100 m,l beat&10 m, and sol cor. l beat. Then, from
Eq. ~3.10b!, L lin; l cor, and therefore

D lin;
l cor

l sol
•••10

l cor

l sol
;1024...1022. ~3.17!

Note thatD lin is the analog of the quantity (d2l cor), intro-
duced in Sec. I. Then from Eq.~3.17! one can see that th
criterion ~1.4! of nonsplitting of the soliton by the random
birefringence is almost certainly satisfied in real fibers, a
consequently the effect of the linear PMD on the soliton c
be treated as a small perturbation.

Similarly, we assume the autocorrelation function of t
components of the nonlinear PMD vector, represented by
second group of terms on the right-hand side of Eq.~3.13!, to
be of the form~3.16!. As shown in Ref.@14# for the first
birefringence model, the corresponding intensity

Dnl,1021D lin ~3.18!

when l cor. l beat. Thus the effect of the nonlinear PMD on
;20-ps soliton is to be much weaker than that of the lin
PMD. The corresponding scaleLnl is now the distance ove
which various quadratic combinations of the quantitiesS1
throughS6, defined in Eq.~3.11!, may change considerabl
@14#. Since the magnitude of the nonlinear PMD terms in E
~3.13! is of order 1, then from Eq.~3.18! it follows that Lnl
, l cor;L lin , which also agrees with the analytical results
Ref. @14#.

Finally, since the above estimates for the coefficientsD lin
andDnl pertain to the particular choice of the pulse and fib
parameters, we will give here the general formulas fr
which these coefficients can always be estimated:

D lin;S l sol

l beat~v0Tp! D
2 l cor

l sol
, Dnl;

Lnl

l sol
. ~3.19!

Sincel sol scales asTp
2 , D lin does not depend onTp , whereas

Dnl;Tp
22 .

IV. EFFECT OF LINEAR AND NONLINEAR PMD
ON A SOLITON

In this section, we will use the machinery developed
Sec. II to calculate the effect of linear and nonlinear PMD
on the soliton, and also to calculate the amount of radia
which is generated by these perturbations. To this end,
will first use Eq.~3.13! to separate explicitly the linear an
nonlinear PMD contributions to the perturbation termsRu
andRv in Eqs.~1.1!:

eS Ru

Rv
D[eS Ru

Rv
D

lin

1eS Ru

Rv
D

nl

, ~4.1!

where
s

d
n

e

r

.

f

r

n
e

eS Ru

Rv
D

lin

52 iVuW t , ~4.2a!

eS Ru

Rv
D

nl

52@ 9
4 M 21NW 22~uW †uW !uW #, ~4.2b!

and M , N, and V were defined in Eqs.~3.6!, ~3.2!, and
~3.14!, respectively. For the first-order calculations, it is a
equate to takeuW 5uW 0, where uW 0 was defined in Eq.~2.1!.
From the estimates made in Sec. III, it follows that the ma
nitude of the small parametere is on the order ofAD lin

;1021...1022, andADnl,AD lin. In this section, we will not
assign a specific value toe, but rather will simply use the
vectoreRW in place ofRW when calculating the evolution of th
soliton parameters and the radiation from Eqs.~2.21! and
~2.22!.

Let us now determine the explicit form of the perturbati
vectorseRW lin andeRW nl . These vectors are defined followin
the general definition~2.5a! of the vectorRW , and Eq.~4.1!,
which separates the perturbation into the linear PMD a
nonlinear PMD parts. SubstitutinguW 0 from Eqs. ~2.1! and
~2.2!, andV from Eq. ~3.15! into Eq. ~4.2a!, and then sub-
stituting the result in Eq.~2.5a!, one finds

eRW lin5S Rlin
~1!

2Rlin
~1!*

Rlin
~2!

2Rlin
~2!*

D , ~4.3!

where

Rlin
~n!522ihQn~z!S 2

i j

h
u001]uu00D , n51,2,

~4.4!

Q1~z!5b8S S̃1cos2b2~ S̃4e2iw1 c.c.!
sin2b

2 D ,

~4.5a!

Q2~z!52b8S S̃1sin2b1~ S̃4e2iw1 c.c.!
cos2b

2

1 1
2 ~ S̃4e2iw2 c.c.! D , ~4.5b!

andu00 is defined in Eq.~2.3b!. Recall that in deriving Eq.
~4.4!, we used the first model of random birefringence, d
cussed in Sec. III.

Similarly, substituting into Eq.~4.2b! the expressions
~2.1! and ~2.2! for uW 0, Eq. ~3.4! for matrix M , and Eq.~3.2!
for vectorNW , one obtains thateRW nl is of form ~4.3!, with the
subscript ‘‘lin’’ being replaced by ‘‘nl.’’ It is convenient to
separate theu andz dependence inRnl

(1,2), as follows:

Rnl
~1,2!52u00

3 ~u!n1,2~z!528h3sech3u n1,2~z!. ~4.6!

Here n1,2(z) are some polynomial functions ofm1(z) and
m2(z) and their complex conjugates, as well as ofe6 iw and
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cosb or sinb. The maximum degree of these polynomials
m1,2(z) andm1,2* (z) is 4, as it is also for botheiw ande2 iw,
and also for cosb or sinb. The explicit forms ofn1,2(z) are
not given here, because they are extremely cumberso
and, moreover, later on we will only need theaveragevalues
of n1,2(z). However, for illustrative purpose only, we wi
write down what a typical term inn1,2 looks like:

m1
3m2* cosb sinbe2iw.

Moreover, one can show thatn1(z) is always real, wherea
n2(z) is, in general, complex. The average values ofn1,2
could be computed, if needed, by using any symbolic ca
lations package; however, we will not need to do even tha
this work.

Before we go on and apply the results of Sec. II to o
particular problem, let us mention the following. The pe
turbed Manakov equation~1.1! in which the perturbation is
given only by the term of the form~4.2a!, and where, in
addition, eitherk18 or k38 vanishes and the remaining coef
cient does not depend onz, can be reduced to the unpe
turbed Manakov equation by a simple phase transforma
~see, e.g., Ref.@19#!. We used this reduction as a check a
verified, whenever possible, that our perturbation results,
tained below, were consistent with those obtained in the c
of such a reduction.~However, we will not present the cor
responding details here.! Having mentioned this point now
we will not be mentioning it again.

A. Evolution of the soliton parameters

We will first evaluate the effect of linear and nonline
PMD’s on the soliton, and then turn to the generation
radiation by the soliton due to these sources. Inserting E
~4.3!–~4.6! into Eqs.~2.22!, we arrive at the following sys-
tem of the first-order evolution equations for the soliton p
rameters:

j̇15ḣ150, ~4.7a!

ṫc15Q1 , ~4.7b!

ȧ11ẇ1cos2b54h2n1 , ~4.7c!

ḃ15$22j ImQ2%1$2 8
3 h2Imn2%, ~4.7d!

ẇ1sin2b5$22j ReQ2%1$2 8
3 h2Ren2%, ~4.7e!

where the quantities with the overdot were defined in E
~2.4!. In the last two equations we used the curly brackets
visually separate the contributions from the linear and n
linear PMD’s.

First, we see that the PMD does not lead, in the first ord
to any changes in the soliton’s mean frequency, mean ve
ity, amplitude, and width. Then, the most important effect
the applications in optical telecommunications is the rand
change in the soliton’s center position, because it results
jitter in the soliton’s arrival time at the receiving end of th
transmission line. Here by the timing jitter we mean the o
that occurs either to similarly polarized pulses propagating
e,

-
in

r

n

b-
se

f
s.

-

.
o
-

r,
c-
r

a

e
n

different fibers, or to differently polarized pulses propagati
in the same fiber. The mean-square value of this timing ji
is

^tc
2~z!&5E

0

z

dz1E
0

z

dz2^Q1~z1!Q1~z2!&. ~4.8!

Since the value ofz ~the upper limit of integration! in Eq.
~4.8! must be on the order of at least several dispers
lengths l sol in order to be of interest for applications, an
since l sol@L lin , then Eq.~4.8! can be approximately rewrit
ten as

^tc
2~z!&5E

0

z

dz1E
2`

`

dŝ Q1~z1!Q1~z11s!&, ~4.9!

with the relative error of this approximation being of ord
L lin / l sol,1023. With the same accuracy, one can setz1
@L lin on the right-hand side of Eq.~4.9!. Then the calcula-
tions for the first birefringence model yield~see Appendix
A! the following result for the timing jitter of the soliton:

^tc
2~z!&5

2

3

b82

DF
z. ~4.10!

We will now make three remarks about Eq.~4.10!. First,
as stated in Sec. I, we need to discuss how Eq.~4.10! is
related to the corresponding result in the linear limit of t
pulse evolution. In that limit and for a given stretch of fibe
Poole and Wagner showed@34# that there exist two mutually
orthogonal directions of polarization of an input pulse, f
which the corresponding directions of the output pulse
not, in the first order, depend on the frequency of the sign
These special directions were called in Ref.@34# the principal
states of polarization~PSP’s!. Any sufficiently narrow-band
pulse at the input can be decomposed into a vector sum
the two PSP’s, and then at the output, the distortion of
pulse’s shape will arise as a result of a differential de
time, td , between the PSP’s@25#. Thus it is the relation
between^td

2& and ^tc
2& in Eq. ~4.10! that we will now dis-

cuss. By the definition oftd , this quantity for a given stretch
of fiber is the maximum timing jitter of the output pulse
where the direction of polarization of the input pulse c
take on any value between 0 andp. ThenA^td

2& is the rms
of that timing jitter averaged over the ensemble of fibe
Using now the obvious fact that the orientations of the PS
in any, sufficiently large, ensemble of fibers must be u
formly distributed in the interval@0, 2p#, one can see tha
A^td

2& is also the average jitter in the pulse’s arrival tim
when the polarization of the input pulse is arbitrary. But th
is precisely whatA^(2tc)

2& is. ~Note: The factor 2 in front
of tc has occurred becausetc is measured relative to th
average arrival time, whereastd is the arrival time difference
between the slowest and the fastest pulses.! Moreover, from
Eqs.~4.7c! and ~4.5a! one can see that the difference in th
arrival times for theorthogonally polarized solitons~with
b50 andb5 p/2) is also the maximum; this observatio
reinforces the statement that (2tc) for solitons is a counter-
part of td for linear pulses. Let us emphasize, however, t
the effects of the~linear! PMD on a linear pulseand on a
solitonare qualitatively different. The former will be, in gen
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eral, distorted and spread out at the output~the spreading
being proportional totd), while the latter will preserve its
shape, although its center may be shifted.

Thus having established the equivalence of the quant
A^td

2& andA^4tc
2&, we will now compare our result~4.10!

for A^4tc
2& with the result forA^td

2& found previously. The
latter result, as given by Eq.~22! of Ref. @14#, reads

^td
2&58

b82

DF
z, ~4.11!

which is three times as large as that for^4tc
2&. Recall that

this result has been derived for the first birefringence mo
and that is does not depend on the relative size ofl cor and
l beat of the fiber. Moreover, one can obtain essentially
same result, i.e., that^td

2&53 ^4tc
2& for the second birefrin-

gence model. This can be rigorously shown in the casel cor
! l beat, whereas for the general relation betweenl cor andl beat
one needs to assume~since we could not prove it rigorously!

that ^ S̃1,4
2 (z)&5 1

3 as z→` ~cf. Appendix A!. The latter as-
sumption, however, seems to be confirmed by the result
numerical simulations reported in Ref.@32#, and therefore
appears to be actually correct. Therefore, we conclude
the timing jitter for solitons is smaller than that for line
pulses, and this appears to be independent of a spe
model of the random birefringence. The physical reason
such a reduction will be given in Sec. V.

As to the second remark, we will compare the timing jitt
~4.10! for the Manakov soliton with that of the soliton of
single NLS equation with the following random source:

iuz1utt12uuuu21 iA2k38~z!ut50, ~4.12!

where k38(z) has the same properties as before@see Eqs.
~3.12!#. The factorA2 in front of k38 is used here in order to

have^k38&5b82. @This example with Eq.~4.12! is purely for-
mal, and the reason for presenting it here will be given
Sec. V when we will explain the above result^td

2&
53^4tc

2&.# The last term in Eq.~4.12! can be removed by

the coordinate transformation (z,t)→@ z̃5z, t̃ 5t
2*0

zA2k38(s)ds#, which immediately yields the value for th
timing jitter in this case:

^tc
2~z!&uNLS52

b82

DF
z. ~4.13!

In deriving Eq. ~4.13!, we used the relation̂ cosF(z)&
5cosF(0)exp(2DFz); cf. Eq. ~8! in Ref. @14#. Thus the tim-
ing jitter for the Manakov soliton due to the linear PMD
three times less than it would be for the single NLS solit
driven by a similar perturbation. As explained in Sec. V, t
reason for this is precisely the same as the reason for
jitter for two-component solitons being less than that for l
ear pulses.

Third and last, this timing jitter is the same for all soliton
in the same data string, provided that all these solitons h
the same initial state of polarization@cf. Eqs. ~4.7b! and
~4.5a!#, and provided that the random polarization rotatio
of individual solitons coming from the noise in the lumpe
amplifiers are ignored@13,35#. ~As demonstrated in Ref
es

l,

e

of

at

ific
r

r

n

he
-
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s

@35#, the latter rotations lead to a rather small timing jitte
compared to the jitter caused by other sources, for reali
fiber and pulse parameters.! Moreover, the timing jitter given
by Eq.~4.7b! does not depend on the velocity of the solito
and thus will be the same for the solitons in any of the WD
~wavelength-division multiplexed! channels.~Note: Recall
that a shift in the soliton’s velocity translates in the physic
units into a shift of its carrier frequency or wavelength!
Thus it seems that problems that such a jitter can cause
soliton transmission line are benign, whereas they have b
shown to be quite detrimental for linear pulses.

Now, Eqs. ~4.7c!–~4.7e! determine the evolution of the
phasesa andw and the polarization angleb of the soliton.
These quantities are not important for the applications,
long as one is only concerned with the propagation o
single pulse.~Note: They may become important, howeve
when one considers a collision of solitons in two differe
WDM channels.! Therefore, and also because of technic
difficulties which arise due to the factor of (sin2b) on the
left-hand side of Eq.~4.7e!, we have not evaluated the ave
age values of̂a2&, ^w2&, and^b2& here.

Finally, to conclude the consideration of the effect of t
PMD on the soliton parameters, we will discuss one feat
of Eqs.~4.7d! and ~4.7e! which is worth mentioning. While
the changes due to the nonlinear PMD of the phasew and the
polarization angleb are independent of the soliton’s veloc
ity, those changes which are due to the linear PMD are p
portional to the velocity. The latter observation may se
strange at first glance, because, given a soliton with a n
zero velocity and some central frequencyv0 of its carrier,
one can go to a reference frame where its velocity will
zero by merely choosing a carrier with a certain frequen
v1 different fromv0. Thus it would seem to be possible t
alter the evolution of the measurable physical quantitiesw
andb by an unphysical act of choosing a different value f
the carrier frequency. The key to resolving this contradict
lies in the fact that in the original evolution Eq.~3.1!, from
which Eq.~3.13! was derived, the matrixK does depend on
v0. @Note: Other parameters in Eq.~3.1! also depend onv0,
but their dependence is not crucial for the present consi
ations.# Thus, having shifted the value of the carrier fr
quency fromv0 to v1, one then must modifyK, so that
@K(v1)2K(v0)#;D @cf. Eq. ~3.4!#. But then, from Eqs.
~3.6! and ~3.5!, the definition of vectoruW will also be modi-
fied as follows:

uW ~v0!5@K21~v0!K~v1!#uW ~v1!. ~4.14!

Then from Eq.~2.1! one has

~eis3wB̂!~v0!5@K21~v0!K~v1!#~eis3wB̂!~v1!,
~4.15!

and even thoughw(v1) and b(v1) are, according to Eqs
~4.7d! and ~4.7e!, not affected by the linear PMD, becaus
the velocity of the soliton in the new reference frame is ze
w(v0) and b(v0) still will vary with z, simply because
@K21(v0)K(v1)# is not the identity transformation.
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B. Generation of radiation by the soliton

Now we will calculate the radiation field generated by t
soliton ~2.1! due to the perturbations~4.1! and ~4.2!. Due to
the complexity of the resulting formulas, it will be conve
nient to present the results for the linear and nonlin
PMD’s separately. We will consider the case of the line
PMD first.

Let us denote the right-hand side of Eq.~2.21g! as
f 1,3(k,z), where the subscripts ‘‘1’’ and ‘‘3’’ correspond to
those in Eq.~2.21g!. Substituting Eqs.~2.15! and~4.3!–~4.5!
into the left-hand side of~2.21g!, we obtain

f 1,lin~k,z![0, ~4.16a!

f 3,lin~k,z!5 ih2~2 ik11!Q2* sech
pk

2
. ~4.16b!

In deriving Eq.~4.16!, we used the following integrals:

E
2`

`

du e2 iku sechu5p sech
pk

2
[J1~k!, ~4.17a!

E
2`

`

du e2 iku sechu tanhu52 ikJ1~k!, ~4.17b!

E
2`

`

du e2 iku sech3u5 1
2 ~k211!J1~k![J3~k!.

~4.17c!

Let us note that, here and below, the expansion coeffic
gn(k,z) (n51, 3!, defined in Eq.~2.14!, is related to the
corresponding coefficientf n(k,z) by

gn~k,z!52 i E
0

z

eil~z2z8! f n~k,z8!dz8, ~4.18!

which follows from Eq.~2.21g!; herel54h2(k211).
Similar to the derivation of Eq.~4.16!, we substitute Eq.

~4.3!, in whichRlin is replaced byRnl given by Eq.~4.6!, into
Eq. ~2.21g! and find

f 1,nl~k,z!5h3~k1 i !2 sech
pk

2
n1~z!, ~4.19a!

f 3,nl~k,z!5
4

3
h3k~k1 i ! sech

pk

2
n2* ~z!. ~4.19b!

In arriving at Eq.~4.19!, we also used, in addition to inte
grals ~4.17!, the integral

E
2`

`

du e2 iku sech5u5
3

4S 11
k2

9 D J3~k![J5~k!,

~4.20!

whereJ3(k) has been defined in Eq.~4.17c!.
The quantities of physical interest are the avera

^uu10u2& and ^uv10u2&, whereu10 and v10 are defined in Eq.
~2.3!. Note that theu andv components of the radiation ar
not, in general, equal tou10 andv10, respectively, but rathe
are related to them via the transformation@cf. Eq. ~2.3!#
r
r

nt

s

S u1

v1
D 5eiCeis3wB̂S u10

v10
D .

But it is u10 and v10 that determine the polarization of th
radiation field relative to the polarization of the solito
Then, from Eqs.~2.14! and~2.5a!, one finds thatu10 andv10
are given by the following expansions:

u105E dk~g1c1
~1!1g1* c1

~2!* !, ~4.21a!

v105E dk g3* c3
~4!* , ~4.21b!

wherecn
( j ) denotes thej th component of the eigenfunctio

cn , n51 and 3. Here and below, integration overk is as-
sumed to be performed over the whole real axis. When w
ing down Eq.~4.21!, we have used the symmetry relatio
c̄1,35s1c1,3* and also the fact that only one component ofc3

does not vanish. In Eq.~4.21! it is understood thatg1
[g1,nl , andg3[g3,lin1g3,nl .

Consider first the quantitŷuu10u2&,

^uu10u2&5E E @^g1~k8!g1* ~k!&c1
~2!~k8!c1

~2!* ~k!

1^g1* ~k8!g1~k!&c1
~1!* ~k8!c1

~1!~k!

1^g1~k8!g1~k!&c1
~2!~k8!c1

~1!~k!

1^g1* ~k8!g1* ~k!&c1
~1!* ~k8!c1

~2!* ~k!#dk dk8.

~4.22!

Using Eq.~4.18!, we obtain

^g1* ~k8!g1~k!&5E
0

zE
0

z

e2 il8~z2z1!1 il~z2z2!

3^ f 1* ~k8,z1! f 1~k,z2!&dz1dz2 . ~4.23!

Then, from Eqs.~4.23! and~4.19a!, one sees that the averag
on the right-hand side of Eq.~4.23! is proportional to
^n1(z1)n1(z2)&. Sincez in Eq. ~4.23! is to be on the order of
several soliton dispersion lengthsl sol, and the correlation
length ofn1(z) is on the order ofLnl! l sol ~cf. Sec. III!, then
one can use the following approximation:

^n1~z1!n1~z2!&52Dn1d~z12z2!, ~4.24!

where@cf. Eq. ~3.16!#

Dn15^n1
2~z!&Lnl . ~4.25!

Note that Eq.~4.25! is consistent with Eq.~4.24! provided
that one interprets thed function in Eq.~4.24! as a limiting
case of the right-hand side of Eq.~3.16! with L→0. Now, to
be more precise, one needs to take into account the fact
there are several groups of terms inn1(z) which give a non-
zero contribution to the average^n1(z1)n1(z2)& as z1→z2.
Their individual correlation lengths can, in general, diff
from group to group, even though they all are expected to
of the same order of magnitude, namely,Lnl . For example,
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the correlation lengths of the following two terms inn1(z):
(m1*

3m2) and (um1u4), must be different, simply because th
correlation length of the former term is finite when in E
~3.6! one ~formally! setsk15k2[0, k3Þ0 @cf. Eq. ~3.3!#,
whereas the correlation length of the latter term is obviou
infinite in that case. Therefore, rigorously speaking, E
~4.25! needs to be replaced by

Dn15(
s

^n1
2~z!&~s!Lnl

~s! , ~4.258!

where the summation is performed over all possible grou
with the terms within one group having the same correlat
lengthLnl

(s) , and^n1
2(z)& (s) is the corresponding average fo

the (s)th group. Since the expression forn1(z), not to men-
tion that forn1

2(z), is extremely cumbersome, then it wou
be technically very difficult to perform the separation
terms in@n1

2(z)# into such groups. Moreover, a calculatio
which can be performed using either of the methods outli
in Refs. @14# or @31#, of the quantityLnl

(s) for each group
would also be a formidable task. Therefore, we chose no
evaluateDn1 from Eq. ~4.258!, but instead will use, as
needed, the following simple estimate:

Dn15O~1!Lnl . ~4.26!

Thus using Eqs.~4.23!, ~4.24!, ~4.19a!, and ~2.10b!, we
obtain for the first term in Eq.~4.22!

I[^g1* ~k!g1~k8!&c1
~2!* ~k!c1

~2!~k8!

5Dn1h4ei ~k82k!u
ei ~l82l!z21

2i ~k8 22k2!
sech

pk

2
sech

pk8

2

3@~k221!22ik tanhu1 sech2u#@~k8 221!

12ik8tanhu1sech2u#. ~4.27!

To evaluate the double integral of this term, as required
Eq. ~4.22!, we first consider]I /]z. Taking thez derivative of
the right-hand side of Eq.~4.27! eliminates the denominato
in that expression, thus making the integration possible in
asymptotic limitz→`. In this limit, the integration can be
done by the method of stationary phase, which yields

E E dkdk8
]I

]zU
z→`

5
pDn1h4

2z
sech2

pk0

2
@~k0

211!2

22~k0
211!sech2u1sech4u#,

~4.28a!

where

k052
u

~8h2z!
~4.28b!

is the point of stationary phase. Since the integral~4.28a!
converges uniformly inz ~for largez), then we interchange
the differentiation and double integration on the left-ha
side of Eq.~4.28a!. Then similar considerations for the oth
terms in Eq.~4.22! yield the following result:
y
.

s,
n

d

to

y

e

]

]z
^uu10u2&U

z→`

.
pDn1h4

2z
sech2

pk0

2
@~k0

211!2

22~k0
211!sech2 u12sech4u#.

~4.29!

Let us note that thez-dependent contribution of the last tw
terms in Eq.~4.22! is, in the limit considered, much smalle
than that of the first two terms, and so it has been neglec
It also turns out that thez-independent contribution of the
last two terms to the average quantity^uu10u2& in Eq. ~4.22!
vanishes exactly.

From Eq.~4.29! we observe, first, that at any given poi
u in the soliton’s reference frame, the average rate of g
eration of the radiation decreases inversely proportional tz.
However, the quantity*2`

` du (]/]z) ^uu10u2&, which is the
rate of generation of the total amount of radiation, over
whole fiber length, in the component parallel to the unp
turbed soliton, is independent ofz @cf. Eq. ~4.28b!#. Second,
we can estimate the average width of the radiation field fr
the first term in Eq.~4.29!. Using Eq.~4.28b! again, we find
that the radiation spreads out around the soliton with a c
stant rate equal, on the order of magnitude, to (4ph2); this
qualitatively agrees with the numerical results of Ref.@17#.
Finally, integrating Eq.~4.29! yields the amount of radiation
which is generated in the component parallel to the solito

u5O~1!, k0!1: ^uu10u2&.
pDn1h4

2
~ sech4u

1tanh4u!lnz, ~4.30a!

u@k0@1: ^uu10u2&.2Dn1h4S u

8h2z
D 3

expS 2
pu

8h2z
D .

~4.30b!

Now let us consider the average radiation field that
generated in the component perpendicular to the soliton.
viously,

^uv10u2&5^uv10u2& lin1^uv10u2&nl , ~4.31!

where the first and second terms are generated due to
linear and nonlinear PMD’s, respectively. Using then E
~4.21b!, ~4.16b!, ~4.18!, ~2.15!, and ~A15!, we obtain in the
limit of z→`:

]

]z
^uv10u2& lin.S p

4h2z
D 4

3

b82

DF
h4 sech2

pk0

2
~ tanh2u1k0

2!,

~4.32!

where k0 was defined in Eq.~4.28b!. We recall that this
result is derived for the first birefringence model, Eqs.~3.9!,
and is independent of the relative size ofl cor and l beat of the
fiber. However, as is discussed in Appendix A, the sa
result almost certainly holds for the second birefringen
model as well. Similar to Eq.~4.32!, in the same limitz→`,
we obtain that
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]

]z
^uv10u2&nl.S p

4h2z
D 2Dn2S 4

3
h3D 2

k0
2 sech2

pk0

2

3~ tanh2 u1k0
2!, ~4.33!

whereDn2 was defined similarly to Eq.~4.24!.
All the remarks regarding Eq.~4.29!, which we made in

the text following that equation, also apply to Eqs.~4.32! and
~4.33!. In addition, we note that the radiation field in bo
components is much wider than the soliton. Thus at lo
distances, the soliton will appear to propagate on top o
wide, noisy pedestal formed by the radiation. Such a pede
could affect the neighboring solitons. However, the nume
cal simulations of Ref.@36# showed that such an effect wou
be rather small compared to the effect of certain other p
turbations in real fibers.

V. SECOND-ORDER RESULTS FOR THE SOLITON
PARAMETERS, AND AN ANALYSIS OF RELATIVE

DYNAMICS OF THE SOLITON’S COMPONENTS

All the analytical results that we found in Sec. IV agr
well with the numerical results of the earlier studies@12,17#.
However, the well-known broadening of the soliton, whi
was observed in these studies, has not been found in
first-order results. We will address this issue in this secti
In so doing, we will first calculate the changes in the so
ton’s width and amplitude through the second order ine, and
show that they obey a linear-diffusion-type equation. In pa
ing, we will also show that the soliton’s parameterj, which
determines its mean velocity and mean frequency, does
change through the second order ine. Next, we will discuss
in detail the intuitively appealing picture of relative oscill
tions of the centers of the soliton’s two orthogonal comp
nents @23,24#, while keeping in mind the following two
goals: ~i! to show how this picture relates to our perturb
tion results, and ~ii ! to compute the average value of th
separation distance between the centers of the compon
By accomplishing the latter goal, we will also qualitative
confirm criterion~1.4!, originally found in Ref.@17# by nu-
g
a
tal
i-

r-

ur
.

-

s-

ot

-

-

ts.

merical simulations, for the soliton not to be split up by t
random birefringence.

The pulse broadening in a randomly birefringent fiber i
combination of two different effects. First, the pulse los
energy by emitting the radiation; hence its amplitude d
creases and the width increases. The average rate of
process can be calculated as follows. Equations~1.1! possess
the following conservation law:

i
d

dzE2`

`

~ uuu21uvu2!dt5eE
2`

`

~u* Ru1v* Rv2 c.c!dt.

~5.1!

For the pure soliton, the left-hand side of Eq.~5.1! equals
(4idh/dz), and since we know@see~4.7a!# that, in first or-
der,dh/dz50, then, in this order, the right-hand side of E
~5.1! must also vanish. In the second order, Eq.~5.1! be-
comes

i
d

dzE2`

`

$~ uu0u21uv0u2!1~ uu1u21uv1u2!%dt

5eE
2`

`

~u1* Ru@uW 0#1v1* Rv@uW 0#1u0* Ru@uW 0 ,uW 1#

1v0* Rv@uW 0 ,uW 1#2 c.c!dt, ~5.2!

whereRu,v@uW 0 ,uW 1#5Ru,v@uW 01uW 1#2Ru,v@uW 0#, uW 0 is defined
in Eq. ~2.1!, and uW 1 is the second term in Eq.~2.3a! @uW 1
5O(e)#. In obtaining the left-hand side of Eq.~5.2!, we
used the orthogonality between the soliton and the radiat
Below we will present calculations, based on Eq.~5.2!, only
for the linear PMD, since the expressions forRu,v@uW 0 ,uW 1# for
the nonlinear PMD are extremely formidable. This, howev
does not seem to affect the final result significantly, since
explained in Sec. III, the nonlinear PMD is much weak
than the linear one for pulses of about 20 ps and longer.

Using Eqs.~2.3!, ~3.13!, and ~3.14!, and the fact that
(u10) lin[0 @cf. Eq. ~4.16a!#, one can rewrite Eq.~5.2! as
follows:
i
d

dzE2`

` S 1

2h D ~ uu00u21uv10u2!du5~2 i e!E
2`

` F $V1~2sin2b!1V2cos2be2iw2V2* sin2be22iw%v10*

3S 2 i
j

h
u001]uu00D1 c.cGdu1~2 i e!E

2`

` F $V1~2sin 2b!

1V2* cos2be22iw2V2sin2be2iw%S 2 i
j

h
v101]uv10D1 c.cGu00du, ~5.3!
eat

ht-

-

whereV1,2 are the components of the matrixV, defined in
Eq. ~3.14!:

V5S V1 V2*

V2 2V1
D .
Recall that, by our convention, adopted in Sec. IV, we tr
v10 as a quantity of ordere. The terms in Eq.~5.3! that
contain the productsv10* ]uu00, u00]uv10* , and their complex
conjugates, make no contribution to the integral on the rig
hand side, because they can be combined into totalu deriva-
tives of v10* u00 and v10u00. On the other hand, the coeffi
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cients of the productsv10* u00 and v10u00 identically vanish.
Thus the right-hand side of Eq.~5.3! is zero.

Similarly, one obtains the momentum conservation law
Eqs.~1.1!:

i
d

dzE2`

`

~u]uu* 1v]uv* !du5eE
2`

`

~Ru]uu* 1Rv]uv*

1c.c!du. ~5.4!

The right-hand side of Eq.~5.4! can also be shown to be zer
in second order ine . Then, from Eqs.~5.3! and ~5.4!, re-
spectively, one obtains the following equations:

i
d

dzE2`

` 1

h
~u00

2 1uv10u2!du5O~e3!,

i
d

dzE2`

` i j

h
~u00

2 1uv10u2!du5O~e3!,

which immediately yield the following evolutions forh and
j:

8K dh

dzL 52
d

dzE2`

` 1

h
^uv10u2&du1O~e3!, ~5.5!

dj

dz
5O~e3!, ~5.6!

where we have used the explicit form ofu00, Eq. ~2.3b!.
Staying with the second-order accuracy~i.e., e2) and then
using Eqs.~4.32! ~recall that we are considering only th
linear PMD contribution! and ~4.28b!, one obtains from Eq
~5.6! the following equation:

K dh

dzL 52
16

9
^h3&

b82

DF
, ~5.7!

which is valid in the limitz→`. Sinceh2^h&<O(e), then
one can replacêh3& by ^h&3 above and hence obtain th
following solution of Eq.~5.7!:

^2h&5
2h0

A114h0
2 ~8b82/9DF!z

, ~5.8!

whereh05h(z50). Thus the soliton’s amplitude, 2h, de-
creases by a linear-diffusion-type law, and the wid
1/(2h), increases accordingly.

Now the second reason for the pulse broadening is
fluctuation in the distance between the centers of the pul
two components, caused by the random birefringence.
deed, let us consider a composite soliton, whose compon
are slightly shifted relative to one another:

AW [S A1

A2
D 5S m12h sech@2h~t1Dt!#

m22h sech@2h~t2Dt!#
D , ~5.9!

whereAW is the original field vector, andm1,2(z) were defined
in Eq. ~3.5!. Here we have also assumed that the soli
parametersb andw @see Eq.~2.1!# are zero, which does no
affect the generality of the considerations below. Now s
f

,

e
’s

n-
nts

n

-

pose that the signal detector at the receiving end of the t
communication line measures the total intensity (uuu2

1uvu2), irrespective of the signal’s polarization:

uuu21uvu2

54h2@sech2u14hDt~ um2u22um1u2!sech2utanh2u

14h2Dt2sech2u~2 – 3sech2u!#1O~Dt3!, ~5.10!

whereu52ht and we have used Eq.~3.7!. The second term
on the right-hand side of Eq.~5.10! corresponds to the soli
ton’s timing jitter, which was extensively discussed in Se
IV A. Meanwhile, the third term appears to increase t
width and decrease the amplitude of the total intensity p
file, as can be easily verified by plotting the right-hand s
of Eq. ~5.10! and comparing the two cases ofDt50 and
DtÞ0. Note that the pulse broadening due to this mec
nism is, on average, independent ofz. Therefore, the broad
ening due to emission of radiation by the soliton, as given
Eq. ~5.8!, will dominate for largez.

Let us now relate the intuitive picture based on the ans
~5.9! with the results obtained in Sec. IV. ForDt!1, Eq.
~5.9! can be rewritten as follows:

S u

v D'S 2h sechu

0 D 12hDt

3S ~ um2u22um1u2!2h sechu tanhu

2m1m22h sechu tanhu D . ~5.11!

On the right-hand side of Eq.~5.11!, the first component of
the second term is proportional to the discrete spectr
modef̂2 @cf. Eq.~2.6!#, which corresponds to the shift of th
soliton’s center, whereas the second component cont
only a combination of the continuous spectrum modes,c3

and c̄3 @cf. Eq. ~2.15!#. Thus the intuitive picture of the
bound oscillations of the soliton’s components about th
center of mass is translated, in the language of the pertu
tion theory, into a timing jitter of the soliton@cf. Eqs.~2.7!
and~4.7b!# and radiation in the component orthogonal to t
unperturbed soliton, i.e.,v10.

Before we proceed, let us make three more observat
about Eq.~5.11!. First, by comparing it with Eqs.~4.16! and
~4.7!, one concludes that it is the linear PMD that cause
relative change of positions of the soliton’s componen
whereas the nonlinear PMD makes no contribution to t
process.

Second, we can now give the reason for the result, fo
in Sec. IV, that the timing jitter for the Manakov soliton
A3 times less than both the timing jitter for a linear pulse
a randomly birefringent fiber and that for a scalar NLS so
ton. Indeed, as we already noted, the potential energy of
relative displacement of the components of the Manak
soliton goes to causing both the timing jitter and radiatio
with the energy going to the radiation being twice that goi
to the discrete spectrum modef̂2. The latter statement fol-
lows upon noticing that the first and second components
the second term in Eq.~5.11! are proportional toS̃1 and S̃4,
respectively, and that̂S̃1

2(z)&5 1
3, ^u S̃4u2(z)&5 2

3 for z→`
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@cf. Eqs.~A14!, ~A15!, and~A17! in Appendix A#. It is also
reasonable to state that the emitted radiation is not, on a
age, absorbed back by the soliton at later times, becaus
perturbations are noncorrelated inz. Thus only one third of
the ‘‘work’’ done by the random birefringence goes to cau
ing the soliton’s timing jitter. On the other hand, for th
linear pulse, all the energy of the relative displacement m
go to the differential delay timetd which was shown to be an
analog of the timing jitter between the components, beca
there is no physical mechanism that would distinguish
tween a linear pulse and the radiation. Similarly, the per
bation term in the scalar NLS@Eq. ~4.12!# does not generate
any radiation, and thus all the energy of the perturbation g
to the timing jitter.

Third observation: ansatz~5.9! would actually mimic the
exact, first-order solution of Eqs.~1.1! if the perturbation had
the form ~4.2a! with k18[0 @cf. Eq. ~3.14!# @compare the
second term on the right-hand side of Eq.~5.11! with Eqs.
~4.7b! and ~4.16b!#. If, however, one intends to study th
dynamics of the soliton’s components in the case when b
k18Þ0 andk38Þ0, then one needs to use a more complica
form of the ansatz, namely,

S A1

A2
D 5US m1 2h sech@2h~t1Dt!#

m2 2h sech@2h~t2Dt!#
D , ~5.98!

whereU is some unitary matrix.
In the remainder of this section, we will obtain som

qualitative information about the quantity^Dt2&. This part of
our work is distinctly different from the preceding part th
has dealt with the perturbation theory. In contrast, now
will attempt to obtain a criterion for the soliton splitting int
two individual components. As was explained in Sec. I, t
criterion could not be found with the perturbation theo
developed above. Instead, we will employ a less rigor
~from the viewpoint of the IST! model that treats the solito
as a bound state of two interacting components. We will
the simplified form of the ansatz~5.9!, as opposed to its mor
exact form~5.98!. Moreover, we will limit ourselves to con
sidering only the second birefringence model in the lim
when l cor! l beat, because the calculations then are sign
cantly simpler than in other cases. Using other reason
birefringence models, as well as consideringl cor and l beat to
be of arbitrary relative size, are expected to produce res
that are qualitatively~or, perhaps, even quantitatively! simi-
lar to those described below.

We require that our model account for the following tw
effects: ~i! the attraction between the components due to
cross-nonlinearity in Eqs.~1.1!, and ~ii ! the damping of the
oscillations due to the emission of radiation. While t
former effect has been analyzed in the literature@18,23,24#,
the latter one, to our knowledge, has not been, at least in
context. In particular, it will be important to determine th
form of the damping of the oscillations~see below!. Here we
will not attempt to analyze this complex and very interest
problem, but will instead present the results for a sim
phenomenological model of the oscillations of the comp
nents. As was shown in Ref.@23#, under certain simplifying
assumptions one can describe the dynamics ofDt by the
following equation of the harmonic oscillator with anonlin-
ear damping:
r-
the

-

st

se
-

r-

es

th
d

e

s

s

e

t
-
le

lts

e

is

e
-

d2Dt

dz2
1gS dDt

dz DDt21v2Dt5k8~z!, ~5.12!

whereg is a phenomenological damping constant,v is the
frequency of the free oscillations, computed in Ref.@23#, and
k8(z) is the d-correlated~since we have assumed thatl cor
! l beat) random force arising due to the group-velocity bir
fringence.@Using the notationk8(z) here implies that this
quantity is related, in some manner which will not be impo
tant for the following, to the previously introduced birefrin
gence parametersk18(z) andk38(z).# Note that, in Ref.@23#,
there was no damping in the equations. Here we have in
duced the nonlinear damping term in Eq.~5.12! because it is
known ~see, e.g., Sec. IV in Ref.@37#! that the damping of
such a form leads to the 1/Az-decay, asz→`, of the free
oscillations. The latter type of decay is characteristic of
radiation modes in dispersive evolution equations~see, e.g.,
references in Ref.@23#!. In fact, an equation that reduces
Eq. ~5.12! in the small-amplitude limit of the oscillations wa
derived in Ref.@37#, although for a different nonlinear evo
lution equation~Kadomtsev–Petviashvili I equation!. Note
also that recently, another equation, that describes the ev
tion of internal mode oscillations, was derived in Ref.@38#,
which also predicts the 1/Az decay of the free oscillations.

Note thatthe magnitude of the damping constantg must
be of order 1, since no small parameter exists on the le
hand side of Eqs.~1.1!. From Eq.~5.12!, the following esti-
mate for^Dt2& can be obtained~see Appendix B!:

^Dt2&'S D

Cgv2D 1/2

, ~5.13!

where ^k8(z)k8(z1)&52Dd(z2z1), D;max(D1,D3) @cf.
Eq. ~3.8!#, and C is some positive constant, withC→3 as
~formally! g→0. SinceC,g,v;O(1), then one can rewrite
Eq. ~5.13! as

A^Dt2&;D1/4. ~5.14!

Thus it is the intensityD of the random birefringence tha
determines the average separation between the solit
components, and thus this intensity needs to be sufficie
small so that the soliton would not be split up into the se
rate components. This agrees qualitatively with the num
cal criterion~1.4!, which was obtained in Ref.@17#.

VI. CONCLUSIONS

The two main goals achieved in this work are the follo
ing. First, in Sec. II, we found explicit equations for th
first-order evolution of the soliton parameters and the rad
tion in the Manakov equation under the influence of an
bitrary perturbation. Second, in Secs. IV and V, we appl
these results to study the effects of linear and nonlin
PMD’s, as specified by Eq.~3.13!, on the pulse propagation
in randomly birefringent fibers.

In developing the perturbation theory for the soliton of t
Manakov equation, we did not use the IST formalism for th
equation. Instead, we made use of the fact that the e
one-soliton solution~which, in general, has two nonzero ve
tor components! of the Manakov equation can be reduced
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6162 56T. I. LAKOBA AND D. J. KAUP
the soliton of the NLS~which has a single component! by
means of a rotation of the reference frame, cf. Eq.~1.3!. Thus
we only needed to use the previously known mathemat
formalism of the perturbation theory for the NLS solito
Obviously, this would not be the case if one were to consi
perturbations of a general, say, two-soliton solution of
Manakov equation; in the latter case, using the IST for
Manakov equation would be essential.

In the application of the results of Sec. II to the random
birefringent fibers, we found that neither the linear nor no
linear PMD’s affect, in the first order, the amplitude and t
mean velocity~mean frequency! of the soliton. However, the
linear PMD does cause a timing jitter, whose rms value
given by Eq.~4.10!. The magnitude of this jitter was show
to be A3 times less than that occurring to the linear pul
~However, we were careful to point out that the effects
this jitter for the linear pulse and for the soliton are quali
tively different.! We also note that since all solitons in
given fiber, which initially have the same state of polariz
tion, will have the same value of the PMD-induced timin
jitter, then this jitter would probably not be detrimental for
soliton communication line. There exist another PM
mediated timing jitter which is caused by the random ro
tion of polarization of individual solitons due to the nois
from lumped amplifiers, and which can be potentially de
mental. However, as shown in Ref.@35#, such a PMD-
mediated jitter in real fibers is rather small compared to
jitter from other sources.

Next, we showed that both linear and nonlinear PMD
cause a slow, random polarization rotation in the refere
frame, which itself rapidly rotates due to the random bi
fringence of the fiber, cf. Eqs.~3.5! and~3.6!. This additional
slow rotation seems not to be practically important if o
considers propagation of a single pulse. However, it m
become important when one considers a collision of t
solitons with distinctly different velocities, as occurs wh
one has several WDM channels in a communication fib
We postpone a study of this effect to a future work. No
that, according to Eqs.~4.7d! and ~4.7e!, only the linear
PMD will be important in that case.

We also calculated the amount of radiation generated
the soliton. The rate of the emission of radiation, measure
a fixed position in a reference frame moving with the solito
was found to decrease inversely proportional to the dista
z. However, the width of the radiation field increases in
linear proportionality toz, thus making the rate of emissio
of the total amount of radiation constant along the fiber. T
amount of radiation generated at some particular point in
soliton’s reference frame then grows proportionally to lnz,
i.e., much slower than the width. Thus the radiation wo
form a wide pedestal, on top of which a soliton would prop
gate down the fiber.

In Sec. V, we found that the soliton’s mean velocity~and
hence the mean frequency! is not affected by the linear PMD
through second order ine. Thus the linear PMD will not
interfere with using several different WDM channels, at le
if one does not consider collisions of the solitons in differe
channels~see above!. Next, we calculated, also for the linea
PMD, the increase in the soliton’s width through second
der and found that it occurs solely due to the emission
radiation by the soliton. This increase obeys a line
al
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diffusion-type law, Eq.~5.8!. Since the strength of the linea
PMD is independent of the pulse width, while the strength
the nonlinear PMD is inversely proportional to its square@cf.
Eq. ~3.19!#, then we expect that the above second-order
sults will be valid for pulses that are not too short~quantita-
tive estimates, however, would require an exact knowle
of the birefringence parameters, which we do not posses
this time!.

In Sec. V, we also discussed how the intuitive picture
oscillations of the centers of the soliton’s components can
related to our perturbative results. Finally, in the same s
tion, we used the analogy of the soliton’s components w
interacting particles to confirm the numerical criterion~1.4!
qualitatively for the soliton to not be split up by the rando
birefringence. We found that, in order to derive such a cr
rion with the necessary numerical factor, as it appears in
~1.4!, one would need to determine the exact form of t
damping term in Eq.~5.12!. Note that the same problem
although in another context, was posed as early as in
@23#, but, to our knowledge, has not been solved.
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APPENDIX A: CALCULATIONS
OF SOME AVERAGED QUANTITIES

FOR THE FIRST BIREFRINGENCE MODEL

Here we will derive Eq.~4.10! for the soliton timing jitter,
as well as discuss some other relevant results regarding
two models of random birefringence, given by Eqs.~3.8! and
~3.9!.

First, we establish the correspondence between the n
tions, introduced in Eqs.~3.8!, ~3.9!, ~3.11!, and ~3.12! of
this paper with the corresponding notations used in Ref.@14#:

~ l cor,2DF ,k1 ,k3,2D1,2D3 ,Sn! this paper

5~hfiber,su
2 ,y,x,s 2hfiber,s

2hfiber,an! Ref. @14# ,

n51,...6 , ~A1!

andb andb8 denote the same quantities as in Ref.@14#. Note
that our quantitiesS1,2,3 and S̃1,2,3 become identical to, re-
spectively,S1,2,3 and S̃1,2,3 of Ref. @14#, if in Eq. ~3.5! one
setsuW 5(1,0)T. Using Eqs.~3.11a! and ~3.6!, one finds that
the vectors (S1 ,S2 ,S3) and (S4 ,S5 ,S6) satisfy the same evo
lution equation:
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d

dzS Sn11

Sn12

Sn13

D 5S 0 0 2k1

0 0 22k3

22k1 2k3 0
D S Sn11

Sn12

Sn13

D ,

n50,3. ~A2!

Also, one can easily establish the following identities:

S1
21S2

21S3
251, S̃1

21 S̃2
21 S̃3

251, ~A3a!

S4
21S5

21S6
250, S̃4

21 S̃5
21 S̃6

250, ~A3b!

S1S41S2S51S3S650, S̃1S̃41 S̃2S̃51 S̃3S̃650,
~A3c!

uS4u21uS5u21uS6u252, u S̃4u21u S̃5u21u S̃6u252.
~A3d!

Next, to computê tc
2& in Eq. ~4.9!, we need to know the

correlation function̂ Q1(z1)Q1(z11s)& whenz1→`. From
the explicit form ofQ1(z), Eq. ~4.5!, one sees that the fol
lowing quantities are then required:

^ S̃n~z1! S̃m~z11s!&, ^ S̃n* ~z1! S̃m~z11s!&, n,m51,4.
~A4!

We used the fact that the soliton parametersb andw change
over much longer distances (. l sol) thanSn do ~i.e., l diffusion),
and thus can be considered as constant in the calculatio
^Q1(z1)Q1(z11s)&. Here we will detail only the calcula
tions for the term̂ S̃1(z1) S̃1(z11s)&; all the other terms can
be computed similarly. We first show, using a techniq
similar to the one used in Refs.@25,14#, that the evolution in
s of that correlator is the same as the evolution of^ S̃1(s)&.
SupposeX(z) is a variable satisfying thestochastic differen-
tial equation

d

dz
X~z!5A~X!1B~X!w~z!, ~A5!

whereA andB are some functions, andw(z) is a white-noise
process:

^w~z!&50, ^w~z1!w~z2!&52Dwd~z12z2!. ~A6!

Then the probability densityp(X0 ,z) for X to have the value
X0 at the ‘‘moment’’ z, is governed by the Fokker-Plan
equation~see, e.g., Ref.@39#!

]p

]z
5

]

]X0
@A~X0!p#1Dw

]

]X0
S B~X0!

]

]X0
@B~X0!p# D

[GAp. ~A7!

Now, the average of any functionf @X# of X is, by defini-
tion, ^ f @X#)&5*dX p(X,z) f @X#, and then

d

dz
^ f @X#~z!&5E dX p~X,z!G f @X#5^G f @X#&,

~A8!
of

e

whereG[2A (]/]X)1DwB(]/]X)B(]/]X) is the operator
adjoint toGA. Note that Eq.~A8! is the same as Eq.~A16!,
derived in Ref.@14# by a different means. In deriving Eq
~A8! we used the condition thatp and (]/]X) p vanish at the
boundaries of the domain whereX is defined. In the calcu-
lations that we need to do in this paper, this is always
case. A generalization to the case whenX is a vector rather
than a single variable is straightforward and can be found
e.g., Ref.@39#, Chap. 3; see also Refs.@25,14#. Now a two-
point correlator ^ f @X#(z) f @X#(z1s)& is defined ~Ref.
@39#, Chap. 2! with the two-point probability density
p(X1 ,z,X2 ,z1s) as follows:

^ f @X#~z! f @X#~z1s!&[E dX1dX2p~X1 ,z,X2 ,z

1s! f @X1# f @X2#.

The densityp(X1 ,z,X2 ,z1s) is known~Ref. @39#, Chap. 5!
to satisfy the same evolution equation,~A6!, in the variables
asp(X,z) does inz, with the operatorG now acting only on
the variableX2 but not onX1. Then

d

ds
^ f @X#~z! f @X#~z1s!&5^ f @X#~z!G f @X#~z1s!&.

~A9!

Taking X5( S̃1 , S̃2 , S̃3) and using the operatorG given in
Ref. @14#, one obtains@cf. Eq. ~30! in Ref. @14##:

d

ds
^ S̃1~z1! S̃1~z11s!&52DF^ S̃1~z1! S̃1~z11s!& ~s.0!.

~A10!

Note that~i! any of the correlators in Eq.~A4! satisfies the
same equation, becauseS̃1 and S̃4 satisfy the same one;~ii !
Eq. ~A10! is obtained for the first birefringence model, and
holds irrespective of the relation between the birefringen
correlation length and the beat length@cf. Eqs.~3.10!#. Now
we need^ S̃1

2(z1)& as the initial condition~at s50) for the
correlator in Eq.~A10!. As was shown in Ref.@14# for the
first birefringence model,

^ S̃1
2~z1!&uz1→`5 1

3 , ~A11!

and thus

^ S̃1~z1! S̃1~z11s!&5 1
3 e2DFs S z1@ l cor5

1

DF
, s.0D .

~A12!

Let us note that̂ S̃1
2(z)& being nonzero is a direct conse

quence of Eq.~A3a!. Similarly, using the rest of Eqs.~A3!
and analogs of Eq.~A10!, we find ~for z1→`)

^ S̃1~z1! S̃4~z11s!&50, ^ S̃4~z1! S̃4~z11s!&50 ,
~A13!

^ S̃4* ~z1! S̃4~z11s!&5 2
3 e2DFs ~s.0!.

Using Eqs.~A12!, ~A13!, and~4.5!, one obtains
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E
2`

`

dŝ Q1~z1!Q1~z11s!&uz1→`5
2

3

b82

DF
, ~A14!

and then a substitution of Eq.~A14! into Eq.~4.9! yields Eq.
~4.10!. Here we used the fact thatl cor;L lin , so that one has
z1@L lin . Similarly, we find

E
2`

`

dŝ Q2* ~z1!Q2~z11s!&uz1→`5
4

3

b82

DF
; ~A15!

this equation is used in deriving Eq.~4.32!.
It is useful to note that an analog of Eq.~A10!, with DF

being replaced by 1/l cor, can also be obtained for the seco
birefringence model, Eqs. ~3.8!, where now l beat
52p l cor/(D11D3). However, in that case we can rigo
ously derive Eq.~A11! only when l cor! l beat ~the details of
the derivation are omitted!. For a general relation betwee
l cor and l beat, we need to use a mean-field approximation
correlators likê (k1

21k3
2) S̃1&, i.e.,

^~k1
21k3

2! S̃1&5C^k1
21k3

2&^ S̃1&, ~A16!

with some constantC.0 ~when l cor! l beat, then C51).
However, as the results of numerical simulations in Ref.@32#
indicate, the direction of the Stokes vector becomes u
formly distributed over the Poincare´ sphere for either of the
birefringence models, which means that Eq.~A11!, probably,
holds for the second model as well. If that is indeed the ca
then for that model, Eqs.~A14! and ~A15! take on the fol-
lowing forms:

E
2`

`

dŝ Q1~z1!Q1~z11s!&uz1→`5 2
3 ~D11D3!,

~A17a!

E
2`

`

dŝ Q2* ~z1!Q2~z11s!&uz1→`5 4
3 ~D11D3!.

~A17b!

APPENDIX B: DERIVATION OF EQ. „5.13…

Here we will derive Eq.~5.13! from Eq. ~5.12!. Multiply
Eq. ~5.12! by Dt, take the average, and then look for t
stationary case, thereby assuming thatd^Dt2&/dz50, etc.,
but ^(dDt/dz)2&Þ0. One obtains:

2 K S dDt

dz D 2L 1v2^Dt2&5^Dt~z!k8~z!&. ~B1!

Similarly, multiplying Eq.~5.12! by (dDt/dz), one obtains

g K S dDt

dz D 2

Dt2L 5 K dDt

dz
~z!k8~z!L . ~B2!

To calculate the right-hand sides of Eqs.~B1! and ~B2!, we
use the Novikov theorem@40#, which states that ifk8(z) is a
stationary Gaussian process~which we assume here to be th
case! andF@k8# is any functional of it; then
r

i-

e,

^k8~z!F@k8#&5E
0

z

dz1^k8~z!k8~z1!&K dF@k8#

dk8~z1!
L ,

~B3!

where dF@k8#/dk8(z1) denotes the functional derivativ
andz50 is the initial point of the evolution. Sincek8(z) can
be assumed to bed-correlated@see Eq.~4.9!#

^k8~z!k8~z1!&52Dd~z2z1!, ~B4!

then we only need to find

d

dk8~z!
@Dt~z!# and

d

dk8~z!
S dDt~z!

dz D .

To this end, rewrite Eq.~5.12! as a system of equations:

dDt

dz
5X,

~B5!

dX

dz
52gXDt22v2Dt1k8~z!,

which can be further rewritten in the integral forms

Dt~z!5E
0

z

X~z1!dz1 ,

X~z![
dDt

dz

5E
0

z

$2gX~z1!@Dt~z1!#22v2Dt~z1!1k8~z1!%dz1 .

~B6!

From Eq.~B6! one obtains~cf. Ref. @40#!

d

dk8~z!
@Dt~z!#50 and

d

dk8~z!
S dDt~z!

dz D51 .

~B7!

Then from Eqs.~B3!, ~B4!, and~B7!, one finds that

^Dt~z!k8~z!&50, K dDt

dz
~z!k8~z!L 5D, ~B8!

where we used the identity*0
zd(z2z1)dz15 1

2.
One can also approximately decompose the fourth-or

moment on the left-hand side of Eq.~B2! into a product of
the two second-order moments:

K S dDt

dz D 2

Dt2L 'CK S dDt

dz D 2L ^Dt2&, ~B9!

where C is some constant, with the approximate equal
becoming exact and withC53 if eitherg50 or if the damp-
ing were linear@in those two cases,Dt(z) would also be, as
k8(z) is, a Gaussian process#. Finally, from Eqs.~B1!, ~B2!,
~B8!, and~B9! one obtains Eq.~5.13!.
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