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Perturbation theory for the Manakov soliton and its applications to pulse propagation
in randomly birefringent fibers
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We develop perturbation theory for the soliton of the Manakov equation, and apply it to the problem of
soliton propagation in randomly birefringent fibers. We calculate both the slow evolution of the soliton
parametergthrough second order for two of thénas well as the radiation emitted by the soliton. Our
analytical results agree well with the corresponding numerical results of earlier studies. We also relate results
obtained with perturbation theory with those obtained from the intuitive picture of the dynamics of the soliton
components as interacting quasipartic(ex1063-651X%97)12611-3

PACS numbeps): 42.65.Tg

[. INTRODUCTION Instead, we take a more direct approach and exploit the simi-
larity between the one-soliton solution of the Manakov equa-
tion and that of a single NLS equation. The soliton of the
Manakov equation has the form:

In this work, we develop perturbation theory for the one-
soliton solution of the exactly integrable, two-component
vector nonlinear Schringer (NLS) model, and apply the
results to a particular problem in the optical fiber communi- . iA27
cations. Thepmodel wr?ich we considerphas the form Uo=A COS5 secthre™ ", (1.2)

. in2

Ukt 2u(u o) = eRfuo 27, vo=A sing secthre”™,
) ) ) where we assumed for the moment that the velocity of the

v, v +20(|u[*+[v][9)=€R,[uv,2,7], soliton, the position of its center, and the constant phases of

bothu andv components are all zero. In E(L.2), the con-

where, in the context of nonlinear optios,andv are the  stant variabled, which is the polarization angle of the soli-
envelopes of the electric field in the fiber;and 7 are, re-  ton, can take on arbitrarfrea) values. Also, the Manakov
spectively, the distance along the fiber and the time in thequation, i.e., the system of Eq4.1) with e=0, is invariant
pulse’s reference framéhusz being the evolution coordi- with respect to the unitary transformation
nate; eR, andeR, are perturbations of arbitrary form; ard
is a small parameter characterizing the magnitude of these u’ cosy —siny\(u
perturbations. Manakof1] was the first to show that Egs. = siny  cosy ' (1.3
(1.1) with e=0 are integrable by the method of the inverse

scattering transform{IST); therefore, we will refer to the by means of which the anglg in Eq. (1.2) can always be
left-hand side of Eqs(1.1) as the Manakov equation. It made equal to zero. In the latter case, the first component of
should be noted that the perturbation theory for a rather genhe soliton(1.2) reduces to the soliton of the scalar NLS
eral class of exactly integrabléy the IST) evolution equa- equation, and then the first of Eq4..1), with =0, reduces
tions, which includes the Manakov equation as a speciajp the NLS equation. The second of those equations becomes
case, was already worked out in REZ]. The results of Ref.  gatisfied identically, because f8= 0, we havey=0. When

[2] allow one, in principle, to find both the evolution of the gne slightly perturbs the resulting equations by allowénig

scattering data associated with the pulse, and the form of thge small but nonzero, the solution will acquire the form
so-called squared eigenfunctions, which give the basis func-

tions over which an arbitrary perturbation of the pulse’s pro- U=Ug|g—ot €U+ -+, v=evs+--.

file can be expande¢see, e.g., Refd.3,4]). However, as

those results refer to a general class of equations, one woulthen foru;, one obtains exactly the linearized NLS equation

have to extract from them the explicit formulas necessary fowith a background of a pure soliton. The solution to this

application to a concrete problem. In fact, in two very recentequation has been known for a long tifide7—-10; it consti-

works[5,6], the IST has been used to develop the perturbatutes the perturbation theory for the NLS soliton. The equa-

tion theory for the Manakov equation with the backgroundtion for v, now becomes simply théinear Schralinger

solution of a generalin particular,N-soliton) form. equation with a secpotential, whose solution can be found

The perturbation theory that we present below does in almost any textbook on quantum mechanics. Thus the per-

make use of the IST formalism for the Manakov equation.turbation theory for the single soliton of the Manakov equa-
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tion can be reduced to two well-known problems. The detailshreshold valuesy,~5.0 [19] [here and below we use the
of this approach will be given in Sec. Il. units of Egs.(1.1)], then a splitting of that bound state oc-

It should be mentioned that, earlier, Malomidd] found  curs, and the soliton components escape from each other,
evolution equations for the parameters of the soliton of thewith each of the resulting “principal” solitons being possi-
perturbed Manakov equation by using the averaged Lably accompanied by a “shadow” in the other component.
grangian density. This allowed him to find the adiabatic evo-The speed with which the escaping solitons separate is ap-
lution of the perturbed soliton. On the other hand, our resultgroximately proportional to §— éy,). On the other hand,
provide full information about the evolution of both adia- When the birefringence is random, numerical simulations
batic and nonadiabatic effects, with the latter describing thé12] have shown that its only effects are “soliton delay, de-
radiation emitted by the perturbed soliton. formation of the soliton, and creation of shadowgNote

In Refs.[12—14], it was shown that the Manakov equation that, in Ref[12], §(z) was taken as randomly assuming only
governs the average evolution of a pulse in long optical comtwo values,= 8.] No splitting of the soliton was observed,
munication fibers. It is known that such fibers are birefrin-even for a rather high value of the birefringence parameter,
gent, with the strength, as well as the direction of the axis o= 15.0, at which the simulations in RefL2] were run.
birefringence, varying over a distance which is on the order Let us note, however, that the outcome of the pulse evo-
of 10—100 m(Ref. [15]; see also Ref{14]). However, the lution for random birefringence will crucially deperitbr a
autocorrelation spectrum of these random variations magiven initial amplitude of the solitoron the relation between
have components fromfaw centimeterso tens or hundreds the birefringence strength and its correlation lerigth The
of meterg16]. This causes depolarization of the initial pulse latter is a typical distance over which the birefringence pa-
[14,16 over tens or hundreds of meters, which, in turn, overramete(s) may vary considerably. It was shown in REE7],
even longer distances, leads to the equalization, on the avepy means of numerical simulations, that the random birefrin-
age, of the nonlinear self- and cross-phase modulation coe@ence will aimost certainly not split the composite soliton of
ficients in the equations for the pulse components. Thus th@ unit amplitude if
Manakov equation results.

One should note that studies of pulse propagation in op-
tical fibers based on the single NLS equation have proven,
themselves so successfin the sense that their results agree
quite well with the results of real physical experimerftyr
two main reasons. The first reason is the aforementioned (8,1 con) this paper= [ 28, 1/(21)] ref (171
similarity between the one-soliton solutions of the NLS and
Manakov equations. The second reason is that most of the Sec. V, we demonstrate how the numerical criteribi)
perturbations which were considered for the NLS, if theycan be obtained, in the order-of-magnitude sense, by analyti-
were rewritten for Egs(1.1), would not destroy the invari- cal means. It is very important to emphasize that the criterion
ance of those equations with respect to transformatla®.  of the soliton splittingcannotbe obtained from the perturba-
However, in Ref[14] it was shown that random variations tion theory. Indeed, the latter is based on the fundamental
of the birefringence parameters in the fiber produce two perassumption that the discrete eigenvalue that corresponds to
turbation terms, which in Ref.14] were called linear and the soliton in the associated scattering problgris only
nonlinear polarization mode dispersiof®MD’s), whichdo  slightly changed by the perturbation. Conversely, the split-
destroy that invariance. Therefore, to determine their effecting implies a significant change in the eigenvéflief the
on the soliton, the perturbation theory for the NLS is noscattering probleril9,20. In Sec. Ill, we show that relation
longer adequate, and the corresponding theory for the Mand1.4) is satisfied for some realistic set of values of the fiber
kov equation is required. and pulse parameters, and so the soliton will not split into

In this work, we will also apply the perturbation theory, two components. Thus we are indeed justified to use our
that we have developed for the Manakov equation, to angperturbation theory for the optical soliton. That is, one can
lytically study the effects of both linear and nonlinear PMD’s consider the soliton to be a single entity, i.e., a bound state of
on the soliton. These effects have been studied numericalligs two components, instead of having to consider the dy-
in Refs.[12,17. Also, the deterministic analoee beloyw  namics of the two components as of separate entities
of the linear PMD alone, without its nonlinear counterpart,[18,23,24.
has been thoroughly studied by both analytid8—21 and It should be mentioned that, from a practical viewpoint,
numerical[20,22 means for two nonlinearly coupled NLS there is a very important physical situation where the results
equations, with the cross-coupling coefficient being not necef our work cannotbe applied. This is either when the initial
essarily unity[as it is in Eq.(1.1)]. This deterministic bire- pulse amplitude is not large enough to give rise to soliton
fringence can be modeled by adding the term$§u,) and  formation, or else when the distance of propagation is suffi-
(—idv,) to the left-hand sides of the first and second of theciently short for the nonlinearity and dispersion to affect the
corresponding analogs of Ed4.1), respectively. Here @is  pulse evolution significantly. In both these cases, the pulse
the group velocity difference between theandv compo-  propagation is linear in the lowest order, with the nonlinear-
nents. When the parametéiis sufficiently small, then, for a ity playing the role of a first-order correction. It is this linear
given amplitude of the soliton, the pulses in the individuallimit of pulse propagation for which much of experimental
components propagate with the same velocity, because imeasurements and theoretical calculations have been done
this case, the cross-nonlinearity is strong enough to holfi16,25,26; see also Ref.14]. Thus it is important to discuss
them together in a bound state. Whérexceeds a certain the relation between some of our results, obtained in Sec. IV,

6 ;<0.05 . (1.9

ere the correspondence between the notations of this paper
and those of Refl17] is:
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and the corresponding results which were earlier obtained for R ( cosB — sinﬁ)
the linear limit. We will do this in Sec. IV. =| . ,
The perturbation theory, which we developed in Sec. I, s~ cosB
can also be useful in other situations, where the Manakoy,o pauli matrices are
equation arises as the main-order evolution equation. In par-
ticular, this equation was show27] to describe pulse evo- 0 1 0 —i 1 0
lution in nonrandombirefringent fibers with a certain ellip- Ul:(l 0), 2 ( i 0 ) 03=(0 _1).
ticity of the eigenmodes. It was also recently reporfted]

that the Manakov equation describes spatial solitons iréndg 7 @, and B are constants. When Eqg4..1) are per-

AIXG%—XAS planar waveggides. Finally, we note that thiSturbed withe# 0, we will take the solution to be of the form
equation can also be derivg@9] when one averages the

equations of the nonlinear directional coupler when taking

into account random variations of the linear coupling coeffi-

cient and phase velocity mismatch between the two cores. where
The remainder of this paper is organized as follows. In

Sec. I, we work out the details of the perturbation theory for R 1 Ugo R Ug

the single soliton of the Manakov equation. The reader who Uoo=27 secm(o) E( 0 ) ulO:(v ) (2.3b

is not interested in the mathematical details of the perturba- 10

tion theory may just browse the beginning of Sec. Il to fa-|n expansiorn(2.3), one also needs to assume the parameters,

miliarize himself or herself with the notations, and then gowhich were constant for solitof2.1), to be slowly varying
directly to the next section. In Sec. Ill, we give a brief deri- fynctions ofz:

vation of Egs.(1.1) in randomly birefringent fibers and

specify the form of the perturbatio®, andR,, as well as d . 5 d . -

estimate the magnitude of the small parametein Sec. IV Q77" Emt et d—zgz €éq+ 2yt

we apply the first-order perturbation theory developed in

Sec. |l to study the effects of the linear and nonlinear PMD’s ) ] ) ]

on the soliton. In this way, both the slow evolution of the d—z,8=6,81+ B+, d—z<p=eqol+ gyt
soliton parameters and the continuous-wave radiation emit- (2.4)
ted by the soliton are calculated and compared, whenever '
possible, with previous findings. In Sec. V, we first calculate

the second-order changes in the two most important soliton —a= d0+ €ay o,
parameters: its widtkwhich is related to the amplitugl@nd dz

velocity (which is related to the mean frequenciyhen, in : . . S
the same section, we relate the results for the soliton timin§/Neré @ and ¢, are given by Eq(2.2h, and 7;, 7, &1,
jitter and the radiation generated due to the linear PMD, a§!C- aré to be determined. , _
obtained by the perturbation theory in Sec. IV, to the corre- In what_ foIIows,'|t will be convenient for us to introduce
sponding results obtained from the intuitive picture of theth€ following notations:

dynamics of the soliton components as interacting quasipar-

(2.29

L]:eiq,eiUS‘pB(L]oo-‘r- 6610+ s ), (233

Te=Teot €T+,

dz

ticles. We also show, by using some semiqualitative argu- Y10
ments, that the root-mean-squarms) distance between the . uio
centers of the soliton’s two components is proportional to the W10= K
fourth root of the birefringence strength. In Sec. VI, we sum- 10
matrize the results obtained in this work. vlo

R, '¢cos8+R,e'*sing
— (R e "“cosB8+R,e'¢sinB)*

Il. PERTURBATION THEORY
FOR THE MANAKOV EQUATION

R= o . , (253
The general form of the one-soliton solution of E¢k1) —R,e"'*sing+R e “cosB
with €=0 is —(—Rye '*sinB+R, e *cosB)*
i (uo) 2y sechpe Vel ¢B(1) 2.1 S L P b
Ug= =2mnsectve' e’ , . = , = , .
* g 7 0 @3 737 o o3 7171 o o, (2.59
where and
¢ iUgo dgUoo d,Uao
‘I’=a(z)—;9, 0=2n[7—1(2)], (2.29 .1 —iUg| . 1 doUoo o 1 d,Uo0
P2 0 | T2y o |P B2 o |
da dr
— = 2 2 —_c_ 0 0 0
dz A&+ n°), dz 4¢, (2.2b

(2.6
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—16ug 0 0 functions (?,)"S form a basis for the expansion of an ar-
R 1| i6ug ) 1 0 R 11 0 bitrary two-component vector with sufficiently smooth and
¢5’=2— b5 . ba=5— . rapidly decaying components.
K 0 7\ 1Uoo 77\ Yoo The second matrix block of the operaloy,, i.e.,L, , is
0 —iUgg Ugo a diagonal operator, and, moreover, each of its entries repre-

Then, substituting Eq92.1)—(2.4) into Egs.(1.1), and re-

taining only the first-ordefin €) terms, one obtains the fol-

lowing evolution equation for the vect«fvlo:
| gt 4 7P LyWig=e 179V R-2i n{ (a1=2£7c1) s
+(=2771) ot @1(P1C0S2B

—&sasinzﬁ>+zaleé4+%&?+sl&2]

=0. (2.7
Above, Ly, is the block-diagonal operator:
LM=(LSLS Lol), (2.83
where
Lais=03(dgp—1)+2(203+i0,)secRd, (2.8b
L, =03(dgp— 1+ 2 secko). (2.80

Since Eq(2.7) is a linear equation fow,,, one may solve it
by using separation of variable&:lo( 0,2) =®10( 0)e™?. This
yields an eigenvalue problem for the operatqy:

Due to the block-diagonal structure bf; , we can indepen-
dently solve each of the two matrix blocks in Eg.9).

(2.9

The operatot, s arises in the perturbation theory for the

sents a well-known quantum-mechanical problem. Thus the
solutions of

L,y =(k%+ 1)yt and L, yr=—(K2+1)y"

(2.129
are the functions
—ik+tanhw\ . (O _ _
i N1 Y — *
O i
(2.12h

The operatorL, also has two linearly independent bound
states,

L, ¢1=L,3=0, (213

where the components cfﬁz coincide, respectively, with

the last two components of the vectods 4 in Eq. (2.6).
Since the operatdr, is Hermitian, then the eigenfunctions

Ut F and?ﬁizform a basis in the space of two-component
vectors.

Thus an arbitrary four-component veclfvﬁo can be ex-
panded over the eigenfunctions and the associate functions
of the operatoL y, as follows:

Wig( 6,2) = f_l[gl(k,z)¢1+E<k,zm+gs<k,z>¢3
4

+93(k,2) r3]dk+ ngl hn(2) ¢t [hD(2) B2

+h2(2)$3]. (2.14

soliton of the NLS, and so its spectrum, as well as the eigenin this equation, the four-component eigenfunctigng and

functions and their closure, are knowsee, e.g., Ref.8]).
That is, one has

LnesyN5= (k2 + 1) gNts, (2.108

)l

(2.10H

YNLS= ko

( 2ik(1—tanh9)) (0) seclf 6
-]+
(k+i)2 1) (k+i)2

wNLS: 0_1( leLS)* ,
(2.109

LiisyN-S=— (K2+ 1) yNts,

LNLS‘?’?,IES:Ov LNLS(‘?’?,z)NLS:_Zia’T,ESa (2.1

where ¢}'5>

and (@7, are the two-component vectors

iy zare
NS 0 o
l/’lz( 0 ) lﬁsz(wl), Yr13=01973 (219

where yN'S and ¢+ are given by Egs(2.10b and (2.12b),

and the exponentially localized functiods throughS are
given by Eq.(2.6). Also, gy 3, 913, andh; throughhS are

the expansion coefficients. In order to find these coefficients
from Eq.(2.7), one needs to know the solution of the adjoint
problem for a row vecto/® which is defined so as to satisfy
the equation

PPLy= Ny, (2.16

whose components coincide with the first two components ofvhere the left-pointing arrow overy, indicates the direction

the corresponding vectors defined in E2.6). Note that the

vectors yN-S, NS and @2)NS are defined in a slightly
different way than in Ref{8]. It was also shown in Ref3]

that the above eigenfunctions bf, s and the two associate

of the differentiationd,. Using the fact that the operator
&3LM is self-adjoint, one can shoysee, e.g., Ref48,30])
that the vectors'(k, 6) o5, wherey is a solution of Eq(2.9)
and the superscript “t” denotes the Hermitian conjugation,
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satisfies Eq(2.16). Then, using the Wronskian relation for
the operatot.,, , one obtains, in a standard way, the follow-
ing inner products:

(YLK | sl g (K)) = (iK' )| o3| ra(K) ) = — 27 S(k—K'),
(2.173

(BT (k)| o3 p(K)) = (Y(K')| o3| a(K)) =278 (k—K'),
(2.17h

where the inner product is defined by

<QImlp>=f:d9 q(e)m(0)p(6).

The inner products among the localized eigenfunctions an

their adjoints can be found straightforwardly:

(#D)"0s|dr)=—(dilos$T)=2i,  (2.183
((69)1 03l do)=—( 3l os| $2)=—2i, (2.18D
(palos|pay=— (bl oslpay=4i. (2.189
All the other inner products are equal to zero.
Now, using the identity
W= Wio, 219

and also the relatiorﬁs: frlzp’l‘s [see Eq.(2.15] and the

explicit form of the localized stateg,; through¢? , one can
easily obtain the following symmetry relations for the expan-
sion coefficients:

914K =0g14K), (2.208

ho=h%, n=1,...,4, h?,=(hI)*. (2.20n

Finally, substituting expansiof2.14) into Eq. (2.7) and
using the inner products EgR.17) and(2.18), we obtain

ihy,— 8i 9?hD+ 2i p(@y— 2¢ 71 + ¢1€0828)

1 "
= 5 ((#)]o3lR), (2.213

. . : . 1 .
iha,— 8 773 +2i n(— 277c1) = = o= ((3) | o3l R),
(2.21b

. 1 .~ o
iha,+2i (= 15in28) = ;- ($ilosR),  (2.210

. . 1 a2
iy +2inBi=— (bl 0alR), (2219
oL
Ihlyz+2l7]7]1=—§(¢1|a'3|R>, (2.21¢
R EOPO
i, +2i 1= (b3l o3lR), (2.21f
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_ 1 I
19,915+ 477 (K24 1)01.5= — 5 (U1 JK)|73[R).
(2.219

(Above,h, ., etc. stands fodh, /dz, etc., respectively, while

the notationg; ; means eitheg, or g3.) Equations forg, 3
follow then from Egs.(2.219 and (2.203. Note also that
Egs. (2.219—(2.21f) are consistent with the symmetry
(2.20D.

The standard requirement that the expansion coefficients
do not grow secularly witlz leads to the following evolution
equations for the soliton parameté¢cs. Eq. (2.4)]:

. 1 ... -

d m=g,(d1l73lR), (2223
. 1 .4~ =
§1-‘E7<¢2|03|R>: (2.22h

Lo 1 oia s
ay— 2871+ @1 COS %:_E<(¢l) |os|R),
(2.229
L ANCAG
c1 5((¢2) o3| R), (2.220
47
. 1 e
@1Sin28= %(¢4|03| R), (2.22¢
. _1 TR
31—%<¢3|03|R>- (2.229

Equations(2.22), (2.219, and(2.14) constitute the complete
first-order perturbation theory for the one-soliton solution of
the Manakov equation. Note that E@8.22 guarantee that if
h, throughh? in Eq. (2.14 are zero az=0, then they will
remain zero for alk.

lll. ORIGIN OF THE MANAKOV EQUATION
IN RANDOMLY BIREFRINGENT FIBERS

In this section, we will follow the main steps of R¢14],
and give the derivation of the Manakov equation in ran-
domly birefringent fibers. We will also estimate the size of
the perturbations to this equation due to linear and nonlinear
PMD.

The equation describing the evolution of a pulse in a fiber
with linearly polarized, orthogonal eigenmodedsge, e.g.,
Ref.[14])

-

I I
A+ KA+IAA +A,+ N=, (3.

where vector,&z(Al,Az)T denotes the envelopes of the
electric field in the two eigenmodes, and

. (JAL2+ §|AsJ2D) A+ § ASAT 3.2
(1A% + Z|A DAL+ £ AZAS '
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All the variables in Eq(3.1) are appropriately normalized, than the nonlinear and dispersion lengths. Therefore, we
with z and 7 denoting the distance along the fiber and theneed to analyze that term before we can proceed with the
retarded time in the pulse’s reference frame, respectivelyanalysis of the other terms.

The coefficient g) in front of the nonlinear ternN in Eq. One can eliminate the fast variations, caused by the ran-
(3.1) is chosen in order to have the resultant Manakov equad®m birefringence, of the direction and phases of the field
tion exactly in the form of Eq(1.1). The most general form vectorA by means of the following transformation:
of the matrixK in Eq. (3.1) is N

my —mz)

A=M(z)u, M(z)=(m . (3.5
2 1

K=k101+ Kky05+ K303, (3.3

wherek,;, «,, and k3 are real, independent random func- Whereu is the “slow” field vector and the matrixv(2)
tions ofz [25,14,3], ando,, o,, andoj are Pauli matri- satisfies

ces, introduced before. The coefficients, «,, and ks,

which vanish if the fiber has a perfectly circularly symmetric

cross section, acquire nonzero values when that circular symyq s unitary:
metry is broken due to unavoidable imperfections in the
manufacturing or installation of the fiber, or due to environ- |my |2+ |m,|2=1. (3.7
mental perturbations. The coefficients and k3 correspond

to the random birefringence introduced by the geometric or Although it would be desirable to carry out the calcula-
stress factors, and the coefficient corresponds to random tions with a most general form of the mati i.e., assum-
microtwists of the fiber around its longitudinal aX®5,27.  ing k1 3to be independent random variables, this could only
For a pair of orthogonal eigenmodes of the fiber which atoe done[31] in the limit when the correlation length,, of
somez=1z, are aligned along some fixed axes in the cross«123is much lesghan the beat length,eq. In this limit, it

section plane, the presence of the taf in the evolution  €a@n be shown that the slow evolution of the pulse envelope is

Eqg. (3.1 causes linear coupling between these modes, aglso_goyerned by the Manakov equation. However, in com-
unication fibers one hdg,~10...100 m and;=10 m

well as an accumulation of a mismatch between their phasefn ot or — -+

as 7 increases along the fiber. The coefficientg(z) and L1419, 0 it is the opposite limit, namelyeo> | peq, that

x5(2) also depend on the center frequenay of the carrier ~ aPPlies. Therefore, in what follows we will have to consider
a simplified model of random birefringence, originally intro-

wave, whereas,(z) obviously does not. Consequently, the ) o
matrix A can be shown to have the forf7,31] dl_Jced in Ref[_16] and further studied in Ref$32,14]. We
will now describe the details of that model.

First, it was shown in Ref.32] by numerical simulations

iM,+KM=0, (3.6

A:(iK) =Kkjo1+ Khos, (3.4) that even ifk,=0 in Eq. (3.3) and «; 3 are independent
Jw w=wy random variables driven bgindependentwhite-noise pro-
cessesv, 5(z), so that

WhETEK:,Ls:((9K1'3/(9(1))|w=w0. dx, Kn

There are several important length scales in E1), dz I_COFJFWn, n=13,
which we shall now discuss. The distarc@nd the ampli- (3.8
tude of A in Eg. (3.1) are normalized in such a way that the D
dispersion length,, which is also on the order of magni- (wp)=0, <Wn(zl)Wm(Zz)>:2FOr Snmé(Z1—23),

tude of the nonlinear length, is unityThis distance is also
sometimes called the soliton peripdlVith such a normaliza- the direction of the Stokes vector of the electric field in the
tion, the magnitudes of the fourth and fifth terms in E2}2) pulse is, after a sufficiently long distance of propagation,
are of order 1, whereas the magnitude of the téis of ~ uniformly randomized over the Poincasphere. As a conse-
the order (so/lpea) > 1. Herelpear (k2+ k2+ k2)"12is the ~ quence, the pulse evolution will be governed by the Mana-
average beat length between the two linear eigenmodes &PV equation even in this, somewhat reduced, model of the
the fiber due to the latter's birefringence, and the notationfandom birefringence [33]. Furthermore, it was shown
over the distance along a single fij@6]. In fact, in present- Still holds, and hence the Manakov equation results as the
day communication fibers the relative differenden(n) be- ~ Main-order evolution equation, even if one further restricts
tween the two refractive indices of the fiber is typically on k1 @nd«s to be

7 . . _
the order of 10 [14]. Then, given that the carrier wave k1=b(@)siND(2),  Kk3=b(w)cosb(2),

length iskg=1.5 um, one had,,=10 m. Forl ;,,~100 km, (3.9
which is of the right order of magnitude for a 20-ps pulse in dd
a dispersion-shifted fiber, one hB&A||~ (I s/l pea) ~ 10" 9z~ Wael(2), (Wa(Z1)We(22)) =2D ¢ 6(21 = 25).-

Here||---|| denotes the magnitude of a vector. As we shall

demonstrate below, in Eq3.1) the magnitude of the third |n Ref.[14], birefringence modelé3.8) and(3.9) were called
term is of order 1, and thus it is the teA that determines the second and first models, respectively. Thus the first
the pulse evolution on the distances that are much shortenodel, which assumes that the birefringence has a fixed total
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strengthb(w), yields essentially the same resUl®2] as the db

more general second birefringence model. An intuitive ex- xk1=b’sind, xz=b’cosp, b’=_— ,
planation of this is as follows. It is the random character of =g

the birefringence angle, rather than that of its strength, that (3.12

is essential for the uniform “smearing” of the Stokes vector
over the Poincarsphere. Indeed, if one considers a model
where the birefringence angle in Eq. (3.9)] is fixed and
the birefringence strength varies randomly, then it is easy

with b’ being independent of. The assumption that the
angle® does not depend od@, that has allowed us to obtain
Eq. (3.12 from Eq.(3.9), is based on the experimental fact

to show that the corresponding Eq8.6) can be solved ex- that in fibers, the group and phase velocities coincide within

actly. In particular, it can be shown that the direction of theabOUt 10%(see, e_'g" Re{.l§]). -
Stokes vector will never be uniformly randomized over the NOW an evolution equation for the yectm:(u,u)T fol-
Poincaresphere. lows from Egs.(3.1), (3.5, and(3.6). It is
It was shown in Ref[14] that, for the first birefringence .. e . R e
model, the average of any polynomial involving the quanti- U +U,.+2(u'u)u=—{iQu,+[§ M~ *N-2(u'u)u]},
ties S, [to be defined in Eqs(3.11) below] and codld® or (3.13
sinN® for anyN can be explicitly computed, with no restric- R
tion being put on the ratiol {, /I es). ON the other hand, the Whereu’=(u*,v*), and
same for the second birefringence model can be done ex- . .
actly only in the limit|o<lpe (Cf. Appendix A. These vty | 2 5 S ‘54)
averages turn out to be important in calculations in Sec. IV, HN-s -5, -S, -8/
and therefore we will mostly use the results for the first bi- (3.19
refringence model in this worlexcept for the end of Sec. V
and Appendix B. According to what was said in the preced- For the first birefringence model, the form @f can be sim-
ing paragraph, restricting our considerations to a specifi®lified:
model of random birefringence does not appear to limit the
validity of our results. ,
Now we will list the most important physical lengths in Q=b
terms of the parameters of the first birefringence model:

+Ké

(3.19

5, —'éz)
-3, -5,/

where we used Eq$3.12 and(3.11h. The left-hand side of
-, 27 (3103 EO (313 is the Manakov equation and right-hand side is a
D’ Pl b ' random perturbation with a zero mean vajad].
Let us now estimate the size of the first term on the right-
| e i~ | for |..>1v..). 3.10 hand side of Eq(3.13, which represents the linear PMD.
atuson™lcor - ( cor lbead ( b The magnitude of the entries of the matfixis on the order

Here |l yrson iS the distance over which the field, measured®f O(k1+ K3) =O[ (K1 + K3)/ wo], where w, is the carrier
with respect to the local axes of birefringence, loses memorfrequency. Next, the magnitude aof, is of the order
of its initial orientation relative to those axes. As was showno(||ﬁ||/Tp), whereT, is the pulse width. Therefore, the size
in Refs.[32,14], | gisusion iS @lso of the order of magnitude of of the linear PMD term in Eq(3.1) is (LwoT,) times the
Fhe distance over which th_e gntnes of the m_aMx defined  gjze of the termKA. For a 20-ps pulse,a(OTp)~1O4, and
in Eqg. (3.5, may change significantly. Next, in what follows thUS||QlTTH~(|so|/|bea)><10—421 in Eq. (3.13. At first

it will be convenient to use the following sets of notations: sight, this seems to be not a small perturbation, since the size
of all the terms on the left-hand side of E.7) is also
O(1). However, as will be clear from the results of Sec. IV,

it is not the rms value ofQu,, i.e., V(||Qu,||?), but rather

Si=Imy|?=|my|?,  S;=2mym,,

— _ 2 2
S=mimptmm;, Ss=my—my, (3118 e inegral of its autocorrelation functighe., the intensity
that will determine the effect of that term on the soliton. The
S;=i(mymy,—mym3), SG=i(m§+ mg), autocorrelation function of each of the components of the
vector Qu, can be approximately given by the following
"S'n+1=8n+1cosb+sn+zsir¥b, expression:
- D 12— 2|
Shi2=—S,.1SiNP+ S, ,cosb, (3.11b (a(a(zy))=||exp ———, (3.16
S,.3=Sy+3, Nn=03. wherea(z) denotes either of the componentsﬁbﬁ, andD

andL are its intensity and correlation length, respectively.
Note that, when in Eq(3.5) the vectoru=(1,0)", thenS  Note that
=(S,,S,,S;)" is the Stokes vector. Moreover, we will re- .
quire an explicit form of the matrixA, defined in Eq(3.4). J' (a(z)a(z+2;))dz=2D.
Following Refs.[25,16,14, we take —c
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From Eq.(3.16, (Djn/Lin)=(|Qu;|?~1...10 inunits

of Eq. (3.13), where the subscript “lin” stands for the linear
PMD. L, is the length scale of the most rapidly changing
term of the matrixQ), i.e., Ljn=min(lcor,! giffusion) - AS we
mentioned earlier, in communication-grade fibers one ha
[ cor~10...200 M| pe;=10 m, and sd o>l pear Then, from
Eqg. (3.100, Ljj,~lcor,» and therefore

| |
10 ~104...102

l sol l sol

Diin~ (3.17)

Note thatDy;, is the analog of the quantitysl.,), intro-
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Ru) X
€ =-iQu,, (4.29
<RU lin
R - I
s e(R”) =—[¢MIN-2(uTu)u], (4.2b
v/nl

and M, N, and Q were defined in Eqs(3.6), (3.2), and
(3.14), respectively. For the first-order calculations, it is ad-
equate to takal=Uu,, whereu, was defined in Eq(2.1).
From the estimates made in Sec. Ill, it follows that the mag-
nitude of the small parameter is on the order of\yDj;,

duced in Sec. I. Then from E¢3.17 one can see that the ~10 ...10 2, and\/D, < \Dj;,. In this section, we will not
criterion (1.4) of nonsplitting of the soliton by the random assign a specific value te but rather will simply use the

birefringence is almost certainly satisfied in real fibers, andsectoreR in place ofR when calculating the evolution of the
consequently the effect of the linear PMD on the soliton carspliton parameters and the radiation from E(&21) and
be treated as a small perturbation. (2.22.

Similarly, we assume the autocorrelation function of the | et us now determine the explicit form of the perturbation
components of the nonlinear PMD vector, represented by thgq iorseR,  and eR,,. These vectors are defined following

second group of terms on the right-hand side of Bdl3), to L -
be of the form(3.16. As shown in Ref[14] for the first the general definitiori2.53 of the vectorR, and Eq.(4.1),

birefringence model, the corresponding intensity . s
nonlinear PMD parts. Substituting, from Egs.(2.1) and

(2.2, andQ from Eq.(3.19 into Eqg. (4.28, and then sub-

D,<1071D;
" " stituting the result in Eq(2.5a, one finds

(3.18

whenl ., >1pearr Thus the effect of the nonlinear PMD on a

(1)
~20-ps soliton is to be much weaker than that of the linear Rin
PMD. The corresponding scalg, is now the distance over R —RD*
which various quadratic combinations of the quantiti®gs €eRji R | (4.3
throughS;, defined in Eq(3.11), may change considerably fin
[14]. Since the magnitude of the nonlinear PMD terms in Eq. —R(2*
(3.13 is of order 1, then from Eq3.18) it follows thatL,
<leor~Liin, Which also agrees with the analytical results of where
Ref.[14]. :
Finally, since the abovg esﬂmates for the coefflc@yps_ Rl(ip]): —9j ﬂQn(Z)( — gt (90“00) . n=12,
andD, pertain to the particular choice of the pulse and fiber n
parameters, we will give here the general formulas from (4.4
which these coefficients can always be estimated: sin28
12l y Ql(z)=b’(§1cos2ﬁ—(§4e2i“’+ c.c)——|,
Dy~ ;) = Dy~—. (3.19
fin IbeaﬁwOTp) I sol nl l'sol (4.53
Sincel, scales a§',2), Djin does not depend oFy,, whereas Q,(2)= —b’(§lsin2,8+('§4e2‘<°+ c.c) cos2p
Dy~T, 2 2
n p -
18 q2ig_
IV. EFFECT OF LINEAR AND NONLINEAR PMD +3(S4e7¢ C-C-))' (4.5D

ON A SOLITON
andugg is defined in Eq(2.3b. Recall that in deriving Eq.

In this section, we will use the machinery developed in, 4 “\e ysed the first model of random birefringence, dis-
Sec. |l to calculate the effect of linear and nonlinear PMD Scussed in Sec. Il

on _the_soliton, and also to calculate th(_a amount o_f radiation Similarly, substituting into Eq.4.2b the expressions
which is generated by these perturbations. To this end, w& D and(2.2) for O Eq. (3.4 f trix M d Eq.(3.2
will first use Eq.(3.13 to separate explicitly the linear and ) an (; ) for uo, .q.( : )eor.ma fixM, an 9'( 2)
nonlinear PMD contributions to the perturbation terRg  for vectorN, one obtains tha¢Ry, is of form (4.3), with the
subscript “lin” being replaced by “nl.” It is convenient to

andR, in Egs.(1.1):

’ separate th@ andz dependence iR{}'?), as follows:
€ € ’

RU nl

R,
R,

R,
R,

= te (4.1 Ri2=—udy(0)n, A2)=—87n°secion, A2). (4.6

lin
Here n; (z) are some polynomial functions oh,(z) and

where m,(z) and their complex conjugates, as well ase6f® and

which separates the perturbation into the linear PMD and
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cosB or sinB. The maximum degree of these polynomials in different fibers, or to differently polarized pulses propagating
m, {2) andm?* «z) is 4, as it is also for botle'* ande™'¢, in the same fiber. The mean-square value of this timing jitter
and also for cog or sinB. The explicit forms ofn; 5(z) are S

not given here, because they are extremely cumbersome, 5 .

and, moreover, later on we will qnly need ta\feeragevalues. <Tc2(2)>:f leJ' d2(Q1(21)Q1(2y)). 4.9

of n, (z). However, for illustrative purpose only, we will 0 0

write down what a typical term in4 , looks like: i . ) .
’ Since the value of (the upper limit of integrationin Eq.

mfm’z‘ cosB singe?*. (4.8) must be on the order of at least several dispersion
lengthsl, in order to be of interest for applications, and

Moreover, one can show that(z) is always real, whereas Sincelso®™Liin, then Eq.(4.8) can be approximately rewrit-
n,(2) is, in general, complex. The average valuesngp €N as
could be computed, if needed, by using any symbolic calcu- 5 "
Lﬁyéonsoﬂ?ckage; however, we will not need to do even that in <7-CZ(Z)>: fo dzlf ds(Q1(z))Qi(z1+5)), (4.9

is work. —o

Before we go on and apply the results of Sec. Il to our . . . . .
particular problem, let us mention the following. The per_W|th the relfrgve error of this approximation being of order
turbed Manakov equatiofL.1) in which the perturbation is Lin/lso<<10"%. With the same accuracy, one can gt
given only by the term of the form4.2a, and where, in > Lin ON the right-hand side of Eq4.9). Then the calcula-
addition, eitherx! or «} vanishes and the remaining coeffi- ions for the first birefringence model yieldee Appendix
cient does not depend an can be reduced to the unper- A) the following result for the timing jitter of the soliton:
turbed Manakov equation by a simple phase transformation 2 b2
(see, e.g., Ref.19]). We used this reduction as a check and <Tc2(z)>: - 7. (4.10
verified, whenever possible, that our perturbation results, ob- 3 Do
tained below, were consistent with those obtained in the case
of such a reduction(However, we will not present the cor-
responding details hepeHaving mentioned this point now,
we will not be mentioning it again.

We will now make three remarks about E¢.10. First,

as stated in Sec. |, we need to discuss how @dLO is
related to the corresponding result in the linear limit of the
pulse evolution. In that limit and for a given stretch of fiber,
Poole and Wagner show¢84] that there exist two mutually
A. Evolution of the soliton parameters orthogonal directions of polarization of an input pulse, for

We will first evaluate the effect of linear and nonlinear Which the corresponding directions of the output pulse do
PMD’s on the soliton, and then turn to the generation ofnot, in the first order, depend on the frequency of the signal.
radiation by the soliton due to these sources. Inserting Eqd.hese special directions were called in R8#] the principal
(4.3—(4.6) into Eqs_(2_22' we arrive at the f0||owing sys- states of poIarizatior(lPSP’s). Any sufficiently narrow-band
tem of the first-order evolution equations for the soliton pa-Pulse at the input can be decomposed into a vector sum of

rameters: the two PSP’s, and then at the output, the distortion of the
pulse’s shape will arise as a result of a differential delay
&=n,=0, (479 time, 74, between the PSP'R25]. Thus it is the relation
between(7?) and(72) in Eq. (4.10 that we will now dis-
Te1=Q1, (4.79  cuss. By the definition ofy, this quantity for a given stretch

of fiber is the maximum timing jitter of the output pulse,

where the direction of polarization of the input pulse can

take on any value between 0 amd Then (72 is the rms

) of that timing jitter averaged over the ensemble of fibers.

B1={—2&ImQ,} +{— §n°Imny}, (4.70  Using now the obvious fact that the orientations of the PSP’s

in any, sufficiently large, ensemble of fibers must be uni-

@1SiN2B=1{—2¢ ReQ,}+{— ¢7?Ren,}, (4.7  formly distributed in the interva]0, 2], one can see that
V(72 is also the average jitter in the pulse’s arrival time,

where the quantities with the overdot were defined in Eqwhen the polarization of the input pulse is arbitrary. But this
(2.4). In the last two equations we used the curly brackets tds precisely what/((27)?) is. (Note: The factor 2 in front
visually separate the contributions from the linear and nonof 7, has occurred becausg is measured relative to the
linear PMD's. average arrival time, whereag is the arrival time difference
First, we see that the PMD does not lead, in the first orderbetween the slowest and the fastest pulséareover, from
to any changes in the soliton’s mean frequency, mean velodgs. (4.79 and(4.53 one can see that the difference in the
ity, amplitude, and width. Then, the most important effect forarrival times for theorthogonally polarized solitons(with
the applications in optical telecommunications is the randon8=0 and 8= 7/2) is also the maximum; this observation
change in the soliton’s center position, because it results in eeinforces the statement that42 for solitons is a counter-
jitter in the soliton’s arrival time at the receiving end of the part of 74 for linear pulses. Let us emphasize, however, that
transmission line. Here by the timing jitter we mean the onethe effects of thglinean PMD on alinear pulseand on a
that occurs either to similarly polarized pulses propagating irsolitonare qualitatively different. The former will be, in gen-

ay+ @1c0828=47°n,, (4.79
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eral, distorted and spread out at the outfthe spreading [35], the latter rotations lead to a rather small timing jitter,
being proportional tory), while the latter will preserve its compared to the jitter caused by other sources, for realistic
shape, although its center may be shifted. fiber and pulse parametersdoreover, the timing jitter given
Thus having established the equivalence of the quantitieby Eq.(4.7b does not depend on the velocity of the solitons
W(r&) and \(47Z), we will now compare our resul.10  and thus will be the same for the solitons in any of the WDM

for \(472) with the result for\{72) found previously. The (wavelength-division multiplexgdchannels.(Note: Recall

latter result, as given by Eq22) of Ref.[14], reads that a shift in the soliton’s velocity translates in the physical
units into a shift of its carrier frequency or wavelength.
, b'2 Thus it seems that problems that such a jitter can cause for a
(14)=85-2, (4.1)  soliton transmission line are benign, whereas they have been
® shown to be quite detrimental for linear pulses.
which is three times as large as that f@rr2). Recall that Now, Egs.(4.79—(4.7¢ determine the evolution of the

this result has been derived for the first birefringence modelPhasesa and ¢ and the polarization anglg of the soliton.
and that is does not depend on the relative sizé.gfand These quantities are not important for the appllca_tlons, as
| beat O the fiber. Moreover, one can obtain essentially the!®Nd as one is only concerned with the propagation of a
same result, i.e., thatrd2>:3<4,rcz> for the second birefrin- single pulse(Note: They may become important, however,

gence model. This can be rigorously shown in the dage mh[()al\r;l orr:e cor:gd_ﬁr]s afcolhsmr:j Ofl solgons In tW? td'ffﬁr?ntl
<lpear Whereas for the general relation betwégpandl ye, channels). Theretore, and aiso because ot tecnnica

- gl difficulties which arise due to the factor of (sijgRon the
one nfzeds © alssun(mnce we could n(?t prove it rigorously left-hand side of Eq(4.76, we have not evaluated the aver-
that (ST (2))=3 asz—o (cf. Appendix A. The latter as-

. _ age values of a?), (¢?), and(pB?) here.
sumption, however, seems to be confirmed by the results of” i1y to conclude the consideration of the effect of the

numerical simulations reported in R482], and therefore py\p o the soliton parameters, we will discuss one feature
appears to be actually correct. Therefore, we conclude thaj; Egs. (4.7d and (4.7@ which is worth mentioning. While

the timing jitter. for solitons is smgller than that for Iinearl the changes due to the nonlinear PMD of the phased the
pulses, and this appears to be independent of a specifi, i, ation angleg are independent of the soliton’s veloc-
model of the random birefringence. The physical reason fofy, 1hose changes which are due to the linear PMD are pro-
such a reduction will be given in Sec. V. . ... portional to the velocity. The latter observation may seem

As o the second remark_, we V\.”” compare the timing Jltterstrange at first glance, because, given a soliton with a non-
(4'10) for the Manakov. soliton with 'that of the soliton 9f a zero velocity and some central frequeney of its carrier,
single NLS equation with the following random source: one can go to a reference frame where its velocity will be
zero by merely choosing a carrier with a certain frequency
w1 different from wy. Thus it would seem to be possible to
where «(z) has the same properties as befgsee Egs. alter the evolution c_Jf the measurablle phygical quantities
(3.12]. The factory/2 in front of x4 is used here in order to andf by an unphysical act of choosmg.a d|ﬁ¢rent valug for

) X 3 ) the carrier frequency. The key to resolving this contradiction

have(xs)=b ?[This example with Eq(4.12 is purely for- |ies in the fact that in the original evolution E€B.1), from
mal, and the reason for presenting it here will be given inyhich Eq.(3.13 was derived, the matrik does depend on
Sec. V when we will explain the above resuftr§) o, [Note: Other parameters in E.1) also depend omp,
=3(472).] The last term in Eq(4.12 can be removed by but their dependence is not crucial for the present consider-
the coordinate transformation z()—[z=z 7=r ations] Thus, having shifted the value of the carrier fre-
— J2\2k}(s)ds], which immediately yields the value for the gquency fromw, to w;, one then must modifiK, so that
timing jitter in this case: [K(@1) =K(wo)]~A [cf. Eq. (3.4]. But then, from Egs.
(3.6) and(3.5), the definition of vectou will also be modi-
fied as follows:

iu,+u,,+2ulul?+iV2k4(2)u,=0, (4.12

12
<r§<z>>|NLs=2D—®z. (4.13

In deriving Eq. (4.13, we used the relationcosP(2)) U(wo)=[K™ (wo)K(w1)]u(wy). (4.14
=cogb(0)exp(—Dy2); cf. Eq.(8) in Ref.[14]. Thus the tim-
ing jitter for the Manakov soliton due to the linear PMD is
three times less than it would be for the single NLS soliton
driven by a similar perturbation. As explained in Sec. V, the
reason for this is precisely the same as the reason for the ic30R _rk-1 ioc3eR
jitter for two-component solitons being less than that for lin- (€727B)(wo) =[K(wo)K(w) J(e72 B)(wl)’(4 15
ear pulses. '

Third and last, this timing jitter is the same for all solitons
in the same data string, provided that all these solitons havand even thoughp(w;) and 8(w,) are, according to Egs.
the same initial state of polarizatidref. Eqgs. (4.7b and  (4.70 and (4.7e, not affected by the linear PMD, because
(4.53], and provided that the random polarization rotationsthe velocity of the soliton in the new reference frame is zero,
of individual solitons coming from the noise in the lumped ¢(wp) and B(wy) still will vary with z, simply because
amplifiers are ignored13,35. (As demonstrated in Ref. [K™1(wy)K(w;)] is not the identity transformation.

Then from Eq.(2.1) one has
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B. Generation of radiation by the soliton

u u
1) =e“1’ei"3‘”é< 10).

Now we will calculate the radiation field generated by the vy V1o

soliton (2.1) due to the perturbationg.l) and(4.2). Due to
the complexity of the resulting formulas, it will be conve- But it is u;g and v, that determine the polarization of the
nient to present the results for the linear and nonlinearadiation field relative to the polarization of the soliton.
PMD’s separately. We will consider the case of the linearThen, from Eqs(2.14 and(2.59, one finds thati;o andv 14
PMD first. are given by the following expansions:

Let us denote the right-hand side of E®.219 as

f14(k,2), where the subscripts “1” and “3” correspond to _f (1) 4 % (2%
those in Eq(2.219. Substituting Eqs(2.15 and(4.3)—(4.5) Uo= | dk(Qs¢n " +01477"), (4.213
into the left-hand side of2.219, we obtain

f1n(k,2)=0, (4.163 vi0= f dkgs ", (4.210

where /) denotes thgth component of the eigenfunction
o, Nn=1 and 3. Here and below, integration oJefs as-
sumed to be performed over the whole real axis. When writ-
In deriving Eq.(4.16), we used the following integrals: ing down Eq.(4.21), we have used the symmetry relation
. ‘ K Y13=01471 3 an_d also the fact thqt qnly one componentgf
f de e—lkﬁsecm:ﬂ.sechTE\]l(k), (4.179  does not vanish. In Eq(4.21 it is understood thaig,

=01, aNdgs=03jin*+ 93 -
Consider first the quantity]ug?),

k
fam(k2)=i72(~ik+1)Qf sech-.  (4.16b

i do e ' sechy tantv=—ikJ(k), (4.17b
- udd = | | Koakgt (w2102 )

j " 6 e % secho= 1 (K2+1)J5(k)=Jq(K). +(T (k) g1 ()™ (k) ¢ (k)
(4.179 +(91(k")g1(K)) 91 (k) 91 (k)
Let us note that, here and below, the expansion coefficient +(g¥ (k) g3 () ¢i* (k) ?* (k) 1dk dK.
gn(k,2) (n=1,3), defined in Eq.(2.19), is related to the (4.22
corresponding coefficierft,(k,z) by '
Using Eq.(4.18, we obtain
z . ’
au(k) =i [ k)dz, (418 -
° (9% (K)gy(k))= f f eI (-2 N 2)
0JO
which follows from Eq.(2.219; herex =47?(k?>+1).
Similar to the derivation of Eq(4.16), we substitute Eq. X(f1(K",z1)f1(k,25))d2,d2,. (4.23
(4.3, in which Ry, is replaced byR,, given by Eq.(4.6), into
Eq. (2.219 and find Then, from Eqgs(4.23 and(4.193, one sees that the average

on the right-hand side of Eq4.23 is proportional to
mk (ny(z1)n1(z,)). Sincez in Eq. (4.23 is to be on the order of
f1n(k,2)=7%(k+i)? sech—-ny(z), (4193  several soliton dispersion lengthg,, and the correlation
length ofny(z) is on the order of <l (cf. Sec. lll), then
one can use the following approximation:

(N1(z1)N1(22)) =2Dn16(21— 2,), (4.24

In arriving at Eq.(4.19, we also used, in addition to inte- \yhere[cf. Eq. (3.16)]
grals(4.17), the integral

4 3 . K .
fan(k.2)= 3 n’k(k+i) sech—=-n3(2). (4.19b

) Dpy=(n(2))Ly- (4.25
* —ike _ 3 k _
f do e 'k’ secRo= Z(1+§ J3(k)=Js(k),

Note that Eq.(4.25 is consistent with Eq(4.24) provided
(4.20  that one interprets thé function in Eq.(4.24) as a limiting

case of the right-hand side of E@.16) with L—0. Now, to
whereJs;(k) has been defined in E¢4.170. be more precise, one needs to take into account the fact that

The quantities of physical interest are the averageshere are several groups of termsnip(z) which give a non-

{lu1d?) and(|vd?), whereu,o andv,, are defined in Eq. zero contribution to the averade,(z;)n,(z,)) asz;—z,.
(2.3). Note that theu andv components of the radiation are Their individual correlation lengths can, in general, differ
not, in general, equal ta;, andv 1, respectively, but rather from group to group, even though they all are expected to be
are related to them via the transformatiah. Eq. (2.3)] of the same order of magnitude, namdly,. For example,
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the correlation lengths of the following two termsnin(z): J ) D 7 ko )

(m* 3mz_) and (my|*), must be different, simply because the 5<|U10| | = seCﬁT[(k(ﬁ— 1)
correlation length of the former term is finite when in Eq. =

(3.6) one (formally) setsk;=k,=0, k3#0 [cf. Eq. (3.3)], —2(k3+1)seck 6+2secho].
whereas the correlation length of the latter term is obviously

infinite in that case. Therefore, rigorously speaking, Eg. (4.29

(4.25 needs to be replaced by o
Let us note that the-dependent contribution of the last two

2 () (5 terms in Eq.(4.22 is, in the limit considered, much smaller
Dnlzzs: (n1(2))Lyy, (4.25)  than that of the first two terms, and so it has been neglected.
It also turns out that the-independent contribution of the

where the summation is performed over all possible groupdast two terms to the average quantity1g®) in Eq. (4.22

with the terms within one group having the same correlatiorvanishes exactly. _ _ _
lengthL$Y , and(n?(2))® is the corresponding average for  From Eq.(4.29 we observe, first, that at any given point
the (s)th group. Since the expression fiof(z), not to men- 0 |n'the sollton’s.re.ference frame,. the average rate of gen-
tion that forn2(z), is extremely cumbersome, then it would eration of the radlatlgn gecreases mversgly pro_port_lonaJ to
be technically very difficult to perform the separation of However, the quantity=..d 6 (3/9z) (|uyd %), which is the
terms in[nf(z)] into such groups. Moreover, a calculation rate of generation of the total amount of radiation, over the
which can be performed using either of the methods outline(‘f"hOIe f|b§r Iength, in the component parallel to the unper-
in Refs.[14] or [31], of the quantityL'® for each group turbed soliton, is independent pficf. Eq. (4.280]. Second,
would allso be a forr;lidable task Therglfore we chose not V€ can estimate the average width of the radiation field from

evaluateD,; from Eg. (4.25), but instead will use, as the first term in Eq(4.29. Using Eq.(4.280 again, we find
, : . : that the radiation spreads out around the soliton with a con-
needed, the following simple estimate:

stant rate equal, on the order of magnitude, ter ¢4); this
D,;=0(1)L,. (4.26 qualitatively agrees with the numerical results of Raf7].
Finally, integrating Eq(4.29 yields the amount of radiation
Thus using Eqs(4.23, (4.24, (4.193, and (2.10b, we  Which is generated in the component parallel to the soliton:
obtain for the first term in Eq4.22

. 2 7TDI']1774

1=(g7 (K)ga(K"))¥h?* (k) ¥ (K') 0=0(1), ko<1: (luyd?)=—F—(sectto
S iz k k! +tanif)Inz, (4.30a

=D 7% K KW ——— sech— sech—— P

7 2i(k' 2—K?) 2 2 .
. , 0 0
X[(k?—1)—2ik tanhp+ secKa][ (k' >—1) o>ko>1:  (|ugg®)=2D 7 8_2> exp( - 8772 )

_— V4 4

+2ik’tanhy+ sech 4]. (4.27 7 77(4.30[)

To evaluate the double integral of this term, as required by
Eq.(4.22, we first considepl/dz. Taking thez derivative of ; : ; _
the right-hand side of Eq#.27) eliminates the denominator g_enerated in the component perpendicular to the soliton. Ob
) ; . . . L 0o viously,

in that expression, thus making the integration possible in the
asymptotic limitz—oe. In this limit, the integration can be o\ 2 2
done by the method of stationary phase, which yields (lo1d*)=(lv1d it ([0 10, (4.3

Now let us consider the average radiation field that is

dl mDp 7? o 5 where the first and second terms are generated due to the
f fdkdklﬁ ~ T oz SeCHT[(koJFl) linear and nonlinear PMD’s, respectively. Using then Egs.
Z—eo (4.21b, (4.16Db, (4.18, (2.15, and(A15), we obtain in the
—2(k2+1)secl 6+ sechi 6], limit of z— co:
(4.283 ) 7 \4b'? 4 kg )
where 27 {101 )in= pycn 30,7 SecﬁT(tanr?0+ko),
(4.32
Ko= ’ 4.28
o (879°2) (4.28 where ko, was defined in Eq(4.28). We recall that this

result is derived for the first birefringence model, E@@9),
is the point of stationary phase. Since the intedda8a  and is independent of the relative sizel gf andl 4 Of the
converges uniformly irz (for large z), then we interchange fiber. However, as is discussed in Appendix A, the same
the differentiation and double integration on the left-handresult almost certainly holds for the second birefringence-
side of Eq.(4.283. Then similar considerations for the other model as well. Similar to Eq4.32), in the same limiz— o,
terms in Eq.(4.22) yield the following result: we obtain that
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2 ko merical simulations, for the soliton not to be split up by the
<| 10 %)= 2Dn2(3 ) k3 secHT random birefringence.
The pulse broadening in a randomly birefringent fiber is a

combination of two different effects. First, the pulse loses

energy by emitting the radiation; hence its amplitude de-

whereD,, was defined similarly to Eq4.24). creases and the width increases. The average rate of this
All the remarks regarding Eq4.29, which we made in  Process can be calculat.ed as follows. Equati@n® possess

the text following that equation, also apply to E632 and  the following conservation law:

(4.33. In addition, we note that the radiation field in both

x(tanr? 0+k3), (4.33

components is much wider than the soliton. Thus at long i— ) (|u|2+|v| dr= Ef (U*R,+v*R,— c.0dT.
distances, the soliton will appear to propagate on top of a dzJ-
wide, noisy pedestal formed by the radiation. Such a pedestal (5.)

could affect the neighboring solitons. However, the numeri-=,. o pure soliton. the left-hand side of 1) equals
cal simulations of Ref.36] showed that such an effect would b ! H§.1 eq

4id5/dz), and si k 4.73] that, in first or-
be rather small compared to the effect of certain other per((—jelr d’l /g)zza(? tl’?(l-:'rl]‘lcein\,\;ﬁis 2?:;[,::} ?E\e r%]ht-r?an:jns;(rjse gfrEq
turbations in real fibers. o7 ! ! y '

(5.1 must also vanish. In the second order, Eg.1) be-

comes
V. SECOND-ORDER RESULTS FOR THE SOLITON
PARAMETERS, AND AN ANALYSIS OF RELATIVE d (= s b
DYNAMICS OF THE SOLITON'S COMPONENTS g ol *+|vol*) + (Jus*+[v4|*)}d7

All the analytical results that we found in Sec. IV agree -
well with the numerical results of the earlier studjag,17. = EJ (U¥Ry[Up]+ v R,[Ug]+Us R [Ug,Uy]
However, the well-known broadening of the soliton, which -
was observed in these studies, has not been found in our . - -
first-order results. We will address this issue in this section. +uoR,[Ug,u;]— c.0dr, (5.2
In so doing, we will first calculate the changes in the soli- - - - - > e ,
ton’s width and amplitude through the second ordes,iand ~ WN€r€Ru,[Uo, U] =Ry ,[UoFus] =Ry ,[Uo], Uo is defined
show that they obey a linear-diffusion-type equation. In passin Ed. (2.1, andu, is the second term in Eq2.33 [u,
ing, we will also show that the soliton’s parameterwhich ~ =O(e€)]. In obtaining the left-hand side of E¢5.2), we
determines its mean Ve|oc|ty and mean frequency, does n@[sed the orthogonallty between the soliton and the radiation.
change through the second ordereinNext, we will discuss ~ Below we will present calculations, based on E5}2), only
in detail the intuitively appealing picture of relative oscilla- for the linear PMD, since the expressions IR;,rv[uo ul] for
tions of the centers of the soliton’s two orthogonal compo-the nonlinear PMD are extremely formidable. This, however,
nents [23,24], while keeping in mind the following two does not seem to affect the final result significantly, since, as
goals: (i) to show how this picture relates to our perturba-explained in Sec. lll, the nonlinear PMD is much weaker
tion results, and (ii) to compute the average value of the than the linear one for pulses of about 20 ps and longer.
separation distance between the centers of the components. Using Egs.(2.3), (3.13, and (3.14), and the fact that
By accomplishing the latter goal, we will also qualitatively (uqg);»=0 [cf. Eqg. (4.163], one can rewrite Eq(5.2) as
confirm criterion(1.4), originally found in Ref[17] by nu-  follows:

©

d 1 o ) .
id—Z oc(Z])(|u00|2+ lv1d®)dO=(—ie) fx[{Ql(—sin2,8)+choszﬂe2"P—Q§ sirBe”4¢lv3,

X

+ c.cldf+(—ie) f:[{ﬂl(—sin 28)

— i —Uggt+ dgUgg
n

+Q§COSZBe_Zi‘P—QQSinZBGZi‘P}( =i %Ulo‘f‘ &01}10 + C.C Uood 0, (53)

where(}, , are the components of the matiiX, defined in  Recall that, by our convention, adopted in Sec. IV, we treat

Eq. (3.14: v1p @S a quantity of ordee. The terms in Eq(5.3) that
contain the products’ydsUgg, Uogdev 1o, and their complex
) O* conjugates, make no contribution to the integral on the right-
:( ! 2 ) ) hand side, because they can be combined into tothriva-
Q; -y tives of vUge and viglgy. ON the other hand, the coeffi-



6160 T. . LAKOBA AND D. J. KAUP 56

cients of the products iUy, and vqgUgg identically vanish.  pose that the signal detector at the receiving end of the tele-
Thus the right-hand side of E¢.3) is zero. communication line measures the total intensityu|{
Similarly, one obtains the momentum conservation law of+|v|?), irrespective of the signal’s polarization:
Eqgs.(1.2):
ul?+]v?

o0

d (=
ld—Zle(UﬁaU*vaﬂov*)dﬁ:Ef (Rydgu* + R, dg0* =479 secRo+4nA7(|my|2—|m,|?)secRotantf o

Feods (5.4) +479°A7’seckRo(2—-3sechh)]+0(A7%),  (5.10
The right-hand side of Eq5.4) can also be shown to be zero Whered=277 and we have used E¢3.7). The second term

in second order ire. Then, from Eqgs(5.3) and (5.4), re-  0n the right-hand side of E¢5.10 corresponds to the soli-
spectively, one obtains the following equations: ton’s timing jitter, which was extensively discussed in Sec.

IV A. Meanwhile, the third term appears to increase the
width and decrease the amplitude of the total intensity pro-
file, as can be easily verified by plotting the right-hand side
of Eqg. (5.10 and comparing the two cases afr=0 and
d (= i¢ A7#0. Note that the pulse broadening due to this mecha-
id—f —(U3y+|v1dP)dO=0(€), nism is, on average, independentzofTherefore, the broad-
z)_ w7 . e . . )
ening due to emission of radiation by the soliton, as given by
which immediately yield the following evolutions fay and Eq. (5.8), will dominate f(_)r Iqr_gez. .
& Let us now relate the intuitive picture based on the ansatz
’ (5.9 with the results obtained in Sec. IV. Farr<1, Eq.
(5.9 can be rewritten as follows:

d (=1
e _w;(uc2)0+|010|2)d920(€3),

d d (=1
8<d_z>:_d_zJ S{lesd)deroie), 65

— oo

0 +2nAT

(Jmy|2—|my|?)27 seché tanh 6
2m;m,2 7 seché tanh ¢

u) 27 sechd
=

520(63), (5.6

(5.11

where we have used the explicit form af,, Eq. (2.3b.
Staying with the second-order accura@., €2) and then
using Egs.(4.32 (recall that we are considering only the On the right-hand side of Eq5.11), the first component of

linear PMD contribution and (4.280, one obtains from Eq. the second term is proportional to the discrete spectrum

(5.6) the following equation: moded, [cf. Eq.(2.6)], which corresponds to the shift of the
dy 16 b2 soliton’s center, whereas the second component contains
<E> =— 3<773>D_’ (5.7  only a combination of the continuous spectrum modgs,
4

and 5 [cf. Eq. (2.19]. Thus the intuitive picture of the
which is valid in the limitz— . Sincen—(7)<O(e), then bound oscillations of the soliton’s components about their

one can replacés?®) by (#)® above and hence obtain the center of mass is translated, in the language of the perturba-

following solution of Eq.(5.7): tion theory, into a timing jitter of the solitofcf. Egs.(2.7)
and(4.7b] and radiation in the component orthogonal to the
270 unperturbed soliton, i.euqq.
(2m)= — ; (5.8 Before we proceed, let us make three more observations
V1+475(8b'%/9Dy), about Eq.(5.11). First, by comparing it with Eqg4.16 and

(4.7), one concludes that it is the linear PMD that causes a
relative change of positions of the soliton’s components,
whereas the nonlinear PMD makes no contribution to this

where o= 7(z=0). Thus the soliton’'s amplitude, 72 de-
creases by a linear-diffusion-type law, and the width,
1/(27), increases accordingly.

Now the second reason for the pulse broadening is thBrecess. .
fluctuation in the distance between the centers of the pulse’s Second, we can now give the reason for the result, found

two components, caused by the random birefringence. ipn Sec. IV, that the timing jitter for the Manakov soliton is

deed, let us consider a composite soliton, whose componenté§ times Iess_ tha_n both '_[he timing jitter for a linear pulse i_n
are siightly shifted relative to one anothe,r' a randomly birefringent fiber and that for a scalar NLS soli-

m,27n sechi2n(r—A7)])’

ton. Indeed, as we already noted, the potential energy of the
. (A
As(Al) = (5.9 soliton goes to causing both the timing jitter and radiation,
2 with the energy going to the radiation being twice that going
in Eqg. (3.5. Here we have also assumed that the solitoAOWS upon noticir.lg that the first and sgcond Eomporlents of
parameterss and ¢ [see Eq(2.1)] are zero, which does not the second term in E¢5.11) are proportional td5; andS,,

my27 sechi2p(r+A7)] relative displacement of the components of the Manakov
whereA is the original field vector, anth, z) were defined to the discrete spectrum modk. The latter statement fol-
affect the generality of the considerations below. Now sup+espectively, and tha{S3(z))=3, (|S4|%(z))=2 for z—=
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[cf. Egs.(A14), (A15), and(A17) in Appendix A]. It is also d2A 7 dA 7
reasonable to state that the emitted radiation is not, on aver- 5 'y( g AP+ w?AT=k'(2), (5.12
age, absorbed back by the soliton at later times, because the dz z

perturbations are noncorrelatedanThus only one third of h . h logical . .
the “work” done by the random birefringence goes to caus-VNer€y IS a phenomenologica damping co'nstant;s the
ing the soliton’s timing jitter. On the other hand, for the fr?que_ncy of the free oscnl_atlons, computed in Re8], and
linear pulse, all the energy of the relative displacement must () is the &-correlated(since we have assumed thag,
go to the differential delay time, which was shown to be an =< beal random force arising due to the group-velocity bire-
analog of the timing jitter between the components, becausfiingence.[Using the notation<’(z) here implies that this
there is no physical mechanism that would distinguish beduantity is related, in some manner which will not be impor-
tween a linear pulse and the radiation. Similarly, the perturfant for the following, to the previously introduced birefrin-
bation term in the scalar NLEEq. (4.12] does not generate 9eNce parameters;(z) and x3(2).] Note that, in Ref[23],
any radiation, and thus all the energy of the perturbation goe1€ré was no damping in the equations. Here we have intro-
to the timing jitter. duced the nonlinear damping term in Ef.12 because it is
Third observation: ansai®.9) would actually mimic the known (see, e.g., Sec. IV in Ref37]) that the damping of
exact, first-order solution of Eq&L.1) if the perturbation had ~Such a form leads to the JZ-decay, ag—=, of the free
the form (4.28 with «;=0 [cf. Eq. (3.14] [compare the oscillations. The latter type of decay is characteristic of the
second term on the right-hand side of E§.11) with Egs. radiation mpdes in dispersive evolution'equaticﬁme, e.g.,
(4.70 and (4.16B]. If, however, one intends to study the reference_s in Ref.23)). In fgct, an equation tha_t re_duces to
dynamics of the soliton’s components in the case when botFd- (5.12 in the small-amplitude limit of the oscillations was

«,#0 andx}#0, then one needs to use a more complicatedjerived in Ref[37], although for a different nonlinear evo-
form of the ansatz, namely lution equation(Kadomtsev—Petviashvili | equatibnNote

also that recently, another equation, that describes the evolu-
(Al) <m1277 sechi2n(7+A7)] tion of internal mode oscillations, was derived in Rd8],

A (5.9) which also predicts the J/E decay of the free oscillations.
2

Note thatthe magnitude of the damping constanmust
be of order 1 since no small parameter exists on the left-
hand side of Eqs1.1). From Eq.(5.12), the following esti-
mate for(A %) can be obtainedsee Appendix B

m,27n sechi2n(7—A7)])’

whereU is some unitary matrix.
In the remainder of this section, we will obtain some
qualitative information about the quantity 7%). This part of

our work is distinctly different from the preceding part that D |12
has dealt with the perturbation theory. In contrast, now we (AT%)~ —2) \ (5.13
will attempt to obtain a criterion for the soliton splitting into Cyo

two individual components. As was explained in Sec. I, thi , / _ _ _
criterion could not be found with the perturbation theorys\llzvge(r?:a é)']( ;Zgg C(Zils»sorig i)(gsiti;%'CODnStZT%ZX(I\?V]ilgig[Caf.S

developed above. Instead, we will employ a less rigorou . — :
(from the viewpoint of the ISTmodel that treats the soliton Engsaljl-):/’)’) ;:0' SinceC, y,~0(1), then one can rewrite
Ea. 5.

as a bound state of two interacting components. We will us
the simplified form of the ansats.9), as opposed to its more (A2)~ D4 (5.14
exact form(5.9'). Moreover, we will limit ourselves to con-

sidering only the second birefringence model in the limitThys it is the intensityD of the random birefringence that
when | o<Ipeq, because the calculations then are signifi-determines the average separation between the soliton’s
cantly simpler than in other cases. Using other reasonablgomponents, and thus this intensity needs to be sufficiently
birefringence models, as well as considerigg andlpet0  small so that the soliton would not be split up into the sepa-
be of arbitrary relative size, are expected to produce resultgate components. This agrees qualitatively with the numeri-

that are qualitativelyor, perhaps, even quantitativelgimi-  cal criterion(1.4), which was obtained in Ref17].
lar to those described below.

We require that our model account for the following two
effects: (i) the attraction between the components due to the
cross-nonlinearity in Eq41.1), and (ii) the damping of the The two main goals achieved in this work are the follow-
oscillations due to the emission of radiation. While theing. First, in Sec. Il, we found explicit equations for the
former effect has been analyzed in the literatiir®,23,24, first-order evolution of the soliton parameters and the radia-
the latter one, to our knowledge, has not been, at least in thison in the Manakov equation under the influence of an ar-
context. In particular, it will be important to determine the bitrary perturbation. Second, in Secs. IV and V, we applied
form of the damping of the oscillatior{see below Here we these results to study the effects of linear and nonlinear
will not attempt to analyze this complex and very interestingPMD'’s, as specified by Eq3.13), on the pulse propagation
problem, but will instead present the results for a simplein randomly birefringent fibers.
phenomenological model of the oscillations of the compo- In developing the perturbation theory for the soliton of the
nents. As was shown in R€23], under certain simplifying Manakov equation, we did not use the IST formalism for that
assumptions one can describe the dynamica efby the  equation. Instead, we made use of the fact that the exact
following equation of the harmonic oscillator withrenlin-  one-soliton solutiorfwhich, in general, has two nonzero vec-
ear damping: tor componentsof the Manakov equation can be reduced to

VI. CONCLUSIONS



6162 T. . LAKOBA AND D. J. KAUP 56

the soliton of the NLS(which has a single componertty  diffusion-type law, Eq(5.8). Since the strength of the linear
means of a rotation of the reference frame, cf. @cg). Thus  PMD is independent of the pulse width, while the strength of
we only needed to use the previously known mathematicahe nonlinear PMD is inversely proportional to its squigre
formalism of the perturbation theory for the NLS soliton. Ed. (3.19], then we expect that the above second-order re-
Obviously, this would not be the case if one were to considepults will be valid for pulses that are not too shatiantita-
perturbations of a general, say, two-soliton solution of thelive estimates, however, would require an exact knowledge
Manakov equation; in the latter case, using the IST for the?f the birefringence parameters, which we do not possess at
Manakov equation would be essential. this time). , o

In the application of the results of Sec. Il to the randomly !N Sec. V, we also discussed how the intuitive picture of
birefringent fibers, we found that neither the linear nor non-0Scillations of the centers of the soliton’s components can be
linear PMD’s affect, in the first order, the amplitude and the'€lated to our perturbative results. Finally, in the same sec-
mean velocitymean frequendyof the soliton. However, the tion, we used the analogy of the soliton’s components with
linear PMD does cause a timing jitter, whose rms value idnteracting particles to confirm the numerical criteridn4)
given by Eq.(4.10. The magnitude of this jitter was shown q_uallt.atlvely for the soliton to r_10t be split up.by the randqm
to be /3 times less than that occurring to the linear pu|seplrefr|r_lgence. We found that, In order to derl_ve such a _crlte-
(However, we were careful to point out that the effects offion with the necessary numerlcal_factor, as it appears in Eq.
this jitter for the linear pulse and for the soliton are qualita-(1'4)' one WOUI.d need to determine the exact form of the
tively different) We also note that since all solitons in a 98MPINg term in Eq(5.12. Note that the same problem,
given fiber, which initially have the same state of polariza-2lthough in another context, was posed as early as in Ref.
tion, will have the same value of the PMD-induced timing [23], but, to our knowledge, has not been solved.
jitter, then this jitter would probably not be detrimental for a
soliton communication line. There exist another PMD- ACKNOWLEDGMENTS
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one has several WDM channels in a communication fiber.
We postpone a study of this effect to a future work. Note
that, according to Eqs(4.70 and (4.7@, only the linear
PMD will be important in that case.

We also calculated the amount of radiation generated by
the soliton. The rate of the emission of radiation, measured at Here we will derive Eq(4.10 for the soliton timing jitter,
a fixed position in a reference frame moving with the soliton,as well as discuss some other relevant results regarding the
was found to decrease inversely proportional to the distanc&vo models of random birefringence, given by E(8) and
z. However, the width of the radiation field increases in a(3.9).
linear proportionality taz, thus making the rate of emission  First, we establish the correspondence between the nota-
of thetotal amount of radiation constant along the fiber. Thetions, introduced in Eqs(3.8), (3.9), (3.11), and (3.12 of
amount of radiation generated at some particular point in thehis paper with the corresponding notations used in Refi:
soliton’s reference frame then grows proportionally ta, In

APPENDIX A: CALCULATIONS
OF SOME AVERAGED QUANTITIES
FOR THE FIRST BIREFRINGENCE MODEL

i.e., much slower than the width. Thus the radiation would (lcon2D o s K1,43,2D1,2D3,Sy) this paper
form a wide pedestal, on top of which a soliton would propa-
gate down tr?e fiber. P prop = (Nfier, 05.Y, %, & Niiver, & MNeiper, @n) Ret.[14]

In Sec. V, we found that the soliton’s mean velodiand
hence the mean frequendg not affected by the linear PMD
through second order ie. Thus the linear PMD will not 5,4 andb’ denote the same quantities as in R&#]. Note
interfere with using several different WDM channels, at Ieast,[hat our quantitiess. - . and S become identical to. re-
if one does not consider collisions of the solitons in different ur g 1,2,3 1,23 o :
channelgsee above Next, we calculated, also for the linear SPectively,S, ;3 and S, ;5 of Ref. [14], if in Eq. (3.5 one
PMD, the increase in the soliton’s width through second or-setsu=(1,0)". Using Egs.(3.118 and (3.6), one finds that
der and found that it occurs solely due to the emission othe vectors §,,S,,S3) and (S;,S5,Sg) satisfy the same evo-
radiation by the soliton. This increase obeys a lineardution equation:

n=1,...6, (A1)
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Sn+1 0 0 2Ky Sh+1
dz Shiz | = 0 0 —2«s Shi2 |,
Sh+s —2Kk1 2K3 0 Sh+s
n=0,3. (A2)

Also, one can easily establish the following identities:

Si+S5+S5=1, Si+S3+S3=1, (A3a)

Si+S2+S2=0, Si+S2+S2=0, (A3b)

S$1S4+ 5,85+ S35=0,

|Sal?+1Ssl?+[Sel?=2.
(A3d)

|Sal?+]Ss|?+[S6|?=2,

Next, to compute 72) in Eq. (4.9), we need to know the
correlation function/Q(z,)Q1(z;+5s)) whenz;—o. From

the explicit form ofQ4(z), Eqg. (4.5, one sees that the fol-

lowing quantities are then required:

(Sn(z)Sm(zs+9)), (S} (z)Sw(za+9)), Nnm=14.

(A4)

We used the fact that the soliton paramej@rand ¢ change
over much longer distances-(,) thanS, do(i.e.,| giusion s

and thus can be considered as constant in the calculation

(Q1(z1)Q1(z1+5s)). Here we will detail only the calcula-
tions for the term(’S;(z;) S1(z,+s)); all the other terms can
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whereG=— A (9/9X) +D,B(d/ aX)B(d/ 9X) is the operator
adjoint toG*. Note that Eq(A8) is the same as EGA16),
derived in Ref.[14] by a different means. In deriving Eq.
(A8) we used the condition thatand (9/9X) p vanish at the
boundaries of the domain whekis defined. In the calcu-
lations that we need to do in this paper, this is always the
case. A generalization to the case wh€is a vector rather
than a single variable is straightforward and can be found, in
e.g., Ref[39], Chap. 3; see also Ref25,14. Now a two-
point correlator ( f [X](z)f [X](z+s)) is defined (Ref.
[39], Chap. 2 with the two-point probability density
p(X1,z,X,,z+5s) as follows:

(XD [XI(2+9) = [ dXiXop(x,2. .2
£9) X1 [X].

The densityp(X;,z,X5,z+5s) is known(Ref.[39], Chap. 5

to satisfy the same evolution equati®Ab), in the variables

asp(X,z) does inz, with the operatoG now acting only on
the variableX, but not onX;. Then

d
3 IXI@f [XI(z+9)=( f [XI2)GT [X](z+9)).
(A9)

Taking X=(5,,5,,S;) and using the operatd® given in
Ref.[14], one obtaingcf. Eq. (30) in Ref.[14]]:

7581z Sz +9) = —Da(S1(z1)Sa(z:1+9))  (s>0).
(A10)

be computed similarly. We first show, using a technique

similar to the one used in Refi25,14], that the evolution in
s of that correlator is the same as the evolution §{(s)).
SupposeX(z) is a variable satisfying thstochastic differen-
tial equation

EX(Z)IA(XHB(X)W(Z),

dz (A5)

whereA andB are some functions, and(z) is a white-noise
process:

(W(2))=0, (W(z))W(22))=2Dy8(21-2,). (A6)

Then the probability densitp(Xg,z) for X to have the value

Xo at the “moment” z, is governed by the Fokker-Plank

equation(see, e.g., Ref.39))

p

J J J
= a_)(()[A(XO)p]+DWf9_)(<)( B(Xo)a—XO[B(Xo)p]

EGAp_ (A7)

Now, the average of any functioh[ X] of X is, by defini-
tion, ( f [X]))=/dX p(X,z)f [X], and then

d
it f [X](Z)>=f dX p(X,2)Gf [X]=(Gf [X]),
(A8)

Note that(i) any of the correlators in EqA4) satisfies the

same equation, becauSg and’S, satisfy the same onéii)

Eqg. (A10) is obtained for the first birefringence model, and it
holds irrespective of the relation between the birefringence
correlation length and the beat lendtif. Eqgs.(3.10]. Now

we need(S%(z,)) as the initial conditionat s=0) for the

correlator in Eq.(A10). As was shown in Refl14] for the
first birefringence model,

(Si(z))]zp=1, (A1)
and thus
S < 1 ,—Dgs 1
(S1(21)Si(z1+8))=3€ "2 2> l=por 70,
(A12)

Let us note tha{'S?(z)) being nonzero is a direct conse-
quence of Eq(A3a). Similarly, using the rest of Eq$A3)
and analogs of EqA10), we find (for z;— )

(S1(21)Sa(z1+9))=0, (Sa(z1)Sy(z,+9))=0,
(A13)

(Sk(z1)Sy(z1+9))=2e7Pos  (5>0).

Using Egs.(A12), (A13), and(4.5), one obtains
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* 2 b/2 z
fwdS<Q1(zl)Q1(zl+S)>|zﬁw=§D—¢. (A14) <K'(z)c1>[,<']>=fodzl<,<'(z),<'(zl)><

5¢[K’]>
o5k’ (z) ]’

B3
and then a substitution of E¢A14) into Eq.(4.9) yields Eq. )
(4.10. Here we used the fact thhi,~L,y,, so that one has where 6®[«’']/6k’'(z;) denotes the functional derivative
z,>Ly;, . Similarly, we find andz=0 is the initial point of the evolution. Since' (z) can

. be assumed to bécorrelated see Eq.(4.9)]

* 4 b
JiwdS<Q’2\‘(Zl)QZ(Zl+S)>|Z1~>oc= 3 D_q); (A15)

(k' (2)k'(21))=2D8(z—z,), (B4)
this gquation is used in deriving E¢.32. _ then we only need to find
It is useful to note that an analog of E@A10), with Dy
being replaced by If,, can also be obtained for the second B 5 [dA7(2)
birefringence model, Egs.(3.8), where now lpey < (2) [A7(z)] and 5 ’(z)( 4z )
K K

=2l /(D1+D3). However, in that case we can rigor-
ously derive Eq(A11) only whenl <l ye4 (the details of

o . a To this end, rewrite Eg(5.12) as a system of equations:
the derivation are omitted For a general relation between 512 y d

I cor andl peary We need to use a mean-field approximation for dAT
correlators like((k?+ x2)S,), i.e., az =%
&((k1+x3)Sy) z (5
(k3 +k3)Sy)=C(xi+ x3)(Sy), (A16) dXx

FER YXA P2 — w?A7T+ k' (2),
with some constanC>0 (when | ,<lpea, then C=1).

However, as the results of numerical simulations in R&Z] which can be further rewritten in the integral forms
indicate, the direction of the Stokes vector becomes uni-

formly distributed over the Poincasphere for either of the

birefringence models, which means that E§11), probably,

holds for the second model as well. If that is indeed the case,

then for that model, Eq§A14) and (A15) take on the fol- dA 7
lowing forms: X(2)=—457

Ar(z)=fOZX(zl)dzl,

(B6)
o :fz{_'yx(zl)[AT(Zl)]z_szT(zl)+K’(Zl)}dzl-
f_md3<Q1(21)Q1(21+5)>|zlaoo: $(D1+Dg), 0
(A179
. From Eg.(B6) one obtaindcf. Ref.[40])
Jlmd5<Q’2‘(21)Q2(21+5)>|zﬁm: $(D1+Dy). P
(A17h) 5 (2 [A7(z)]=0 and

3 (dAT(Z))_l

ok'(z)\ dz
(B7)
APPENDIX B: DERIVATION OF EQ. (5.13 .
Then from Egs(B3), (B4), and(B7), one finds that
Here we will derive Eq(5.13 from Eq. (5.12. Multiply
Eqg. (5.12 by Ar, take the average, and then look for the
. ; dAT
stationary case, thereby assuming ttéa 2)/dz=0, etc., (A7(z)x'(2))=0, {——(2)x'(2))=D, (BY)
but ((dA7/dz)2)#0. One obtains: dz
dA 7|2 where we used the identitff6(z— z,)dz, = 3.
_<(_ >+w2(Arz>=<A7—(z)K’(z)). (B1) One can also approximately decompose the fourth-order
dz moment on the left-hand side of E@2) into a product of

the two second-order moments:

Similarly, multiplying Eq.(5.12 by (dA 7/dz), one obtains
dA7\? dA <<di7>2A 2>~C<<&)2><A 2 (B9)
N A L Lt

where C is some constant, with the approximate equality
To calculate the right-hand sides of E¢B1) and(B2), we  becoming exact and witG =3 if either y=0 or if the damp-
use the Novikov theorefi®0], which states that ik’ (z) isa  ing were lineafin those two cases\ 7(z) would also be, as
stationary Gaussian processhich we assume here to be the «'(2z) is, a Gaussian process$-inally, from Egs.(B1), (B2),
case and®[ «'] is any functional of it; then (B8), and(B9) one obtains Eq(5.13.



56 PERTURBATION THEORY FOR THE MANAKOV SOLITON . ..

[1] S. V. Manakov, Zh. Eksp. Teor. Fi&5, 505 (1973, [Sov.
Phys. JETF38, 248 (1974)].

[2] V. S. Gerdjikov, Teor Mat. Fiz99, 292 (1994 [Theor. Math.
Phys. Phys99, 593(1994].

[3] D. J. Kaup, J. Math. Anal. Appb4, 849 (1976.

[4] D. J. Kaup, SIAM(Soc. Ind. Appl. Math. J. Appl. Math.31,
121(1976.

[5] M. Midrio, S. Wabnitz, and P. Franco, Phys. Rev5& 5743
(1996.

[6] V. S. Shchesnovich and E. V. Doktorov, Phys. Rev5E
7626 (1997).

[7] V. I. Karpman, Phys. Scr0, 462(1979.

[8] D. J. Kaup, Phys. Rev. A2, 5689(1990.

[9] J. P. Gordon, J. Opt. Soc. Am. B 91 (1992.

[10] J. N. Elgin, Phys. Rev. A7, 4331(1993.

[11] B. A. Malomed, Phys. Rev. A3, 410(199)).

[12] P. K. A. Wai, C. R. Menyuk, and H. H. Chen, Opt. Letf,
1231(1991).

[13] S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N.

S. Bergano, J. Lightwave Techndl0, 28 (1992.

[14] P. K. A. Wai and C. R. Menyuk, J. Lightwave Techn@},
148(1996.

[15] C. R. Menyuk(private communication

[16] C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am.1d, 1288
(19949.

6165

[25] G. I. Foschini and C. D. Poole, J. Lightwave Techr#|1439
(1991.

[26] C. D. Poole, Opt. Lettl4, 523(1989.

[27] C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am.18, 1305
(1994.

[28] J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhme-
diev, Phys. Rev. Letfr6, 3699(1996.

[29] J. W. Haus and T. I. Lakob@anpublisheg

[30] D. J. Kaup and T. I. Lakoba, J. Math. Phy¥, 3442(1996.

[31] T. I. Lakoba, J. Opt. Soc. Am. B3, 2006(1996.

[32] P. K. A. Wai and C. R. Menyuk, Opt. LetL9, 1517(1994.

[33] In Ref.[31], it was shown that in the case wheg>| e, the

averaging yields a system that is, in general, different from the

Manakov equation. This, however, does not contradict the con-

clusion of Ref.[14], where the Manakov equation was shown

to result when modg(3.8) with anarbitrary | ., was used. The

reason is that Ref31] used the assumption théh the nota-

tions of this work |«|/|dx/dz|>1eq. Clearly, this is not the

case for Eq(3.8), since the white noise has infinite amplitude

(see, e.g., Ref39]). We also note that the assumptions under

which model(3.8) was derived seem to be more realistic than

the above assumptiofk|/|dx/dz|>1peq. Indeed, a major

source of randomness of the fiber’s refractive indices is the fast

and noncorrelated fluctuations in the equipment and the ambi-

ent conditions during the fiber drawing process; this is exactly

what the white-noise term in E¢3.8) models.

[17] L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, [34] C. D. Poole and R. E. Wagner, Electron. L&, 1029(1986.

Opt. Lett. 14, 1219(1989.

[18] Yu. S. Kivshar, J. Opt. Soc. Am. B, 2204(1990.

[19] D. J. Kaup and B. A. Malomed, Phys. Rev.48, 599 (1993.

[20] V. V. Afanasjev and V. A. Vysloukh, J. Opt. Soc. Am. H,
2385(1999.

[21] X. D. Cao and C. J. McKinstrie, J. Opt. Soc. Am.1B, 1202
(1993.

[22] C. R. Menyuk, Opt. Lettl2, 614(1987%); J. Opt. Soc. Am. B,
392(1988.

[23] T. Ueda and W. L. Kath, Phys. Rev. 42, 563 (1990.

[24] D. J. Kaup, B. A. Malomed, and R. S. Tasgal, Phys. Re48E
3049(1993.

[35] L. F. Mollenauer and J. P. Gordon, Opt. LetB, 375(1994.

[36] P. K. A. Wai, C. R. Menyuk, and H. H. Chen, Opt. Letf,
1735(199)).

[37] K. A. Gorshkov and D. E. Pelinovsky, Physica &, 468
(1995.

[38] D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev,
Physica D(to be publishegd

[39] C. W. Gardiner,Handbook of Stochastic MethodSpringer-
Verlag, Berlin, 1985

[40] E. A. Novikov, Zh. Eksp. Teor. Fiz47, 1919 (1964 [Sov.
Phys. JETR20, 1290(1965]; W. Horsthemke and R. Lefever,
Noise Induced Transition&Springer-Verlag, Berlin, 1983



